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I met a traveller from an antique land 

Who said “Two vast and trunkless legs of stone 

Stand in the desert. Near them, on the sand, 

Half sunk, a shattered visage lies, whose frown, 

And wrinkled lip, and sneer of cold command, 

Tell that its sculptor well those passions read 

Which yet survive, stamped on these lifeless things, 

The hand that mocked them and the heart that fed; 

And on the pedestal these words appear: 

'My name is Ozymandias, King of Kings; 

Look on my works, ye Mighty, and despair!' 

Nothing beside remains. Round the decay 

Of that colossal wreck, boundless and bare 

The lone and level sands stretch far away.” 

 

- Percy Bysshe Shelley’s ‘Ozymandias’ 
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2. Abstract 

 

Following the development of the lung-on-a-chip system there has been a rapid increase 

in interest in advanced tissue culture models embedded in microfluidic systems. Some 

models, and the focus of this thesis, utilise micro-structured compartments to control cell 

assembly and recapitulate tissue architecture. This thesis aims to develop a vascularised 

model of ovarian cancer within a microfluidic chip. Interactions between the vasculature 

and ovarian cancer have not been widely explored, though studies have demonstrated 

high micro-vessel density as an independent prognostic marker for worse progression-

free survival in women with advanced epithelial ovarian cancer.  In addition, the use of 

anti-angiogenics, such as bevacizumab, have been shown to be effective adjuvant and 

neoadjuvant therapies in high grade serous ovarian cancer (HGSOC) treatment. This 

thesis first examines the parameters enabling the formation of a reproducible stable 

microvascular system. Markers associated with the maturation of the microvasculture, 

including adheren and tight junction markers, are characterised, in addition to the 

quantification of the barrier properties of the endothelium. This system is then used to 

investigate the interactions between endothelial cells and various stromal cells potentially 

important for endothelium maturation. It is observed that pericytes inhibit vessel 

hyperplasia and reduce vessel permeability, in agreement with what is reported in 

literature, but also improve the stability of the vasculature in response to stress (low 

serum). The interaction between the vascular system and a HGSOC cell line (G33) is then 

presented. G33s are found to promote short-term vessel sprouting, whereas HUVECs 

were found to stimulate G33 proliferation and promote a change in morphology. Finally, 

our vascular model was used in developing a novel model for the assessment of efficacy 

of drug-therapy, via the embedding of G33 spheroids into a microvasculature. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/progression-free-survival
https://www.sciencedirect.com/topics/medicine-and-dentistry/progression-free-survival
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5. Introduction 

 

 

5.1. Ovarian cancer characterisation 

Ovarian cancer is the sixth most common female cancer in the UK, with 7,470 new cases 

diagnosed and 4,227 deaths in 2016, and is recognised as the most deadly female 

gynaecological malignancy [1, 2]. The term ‘ovarian cancer’ covers an array of separate 

diseases located in the pelvic region, including epithelial, sex cord-stromal and germ cell 

ovarian cancers. Epithelial ovarian cancer is the most common subtype, representing 

around 85-95% of all ovarian cancer (see Table 1) [2]. This thesis focuses on high-grade 

serous ovarian cancer (HGSOC), which represents around 65% of all epithelial ovarian 

cancers and disproportionately represents around 70-80% of all ovarian cancer fatalities. 

[2, 3].  

Table 1: Ovarian cancer subtypes  

Categories % of all ovarian cancers 

Epithelial 85-95 

Sex-cord stromal 5-8 

Germ cell 3-5 

Metastatic 4-6 

Other 1 

 

This table was adapted from Auersperg et al [2]. 

Ovarian cancer is characterised according to the World Health Organizations 

classification, which examines the tissue of origin, phenotype and genotype. Epithelial 

ovarian cancers are categorised as either Type I or Type II, with Type I cancers being 



16 
 

recognised as being generally indolent and slow growing,  examples include clear cell 

carcinoma and low-grade serous carcinoma [4]. Whereas, Type II, of which HGSOC is 

the most prevalent, are generally regarded as being more aggressive and typically 

diagnosed at a later stage, [4].  

As well as sub-groups, epithelial ovarian cancer is defined according to its stage or grade, 

which is determined by disease progression. The most common system for grading 

epithelial ovarian cancer is the International Federation for Gynaecologists and 

Obstetricians (FIGO) system, which republished its clarifications in 2014 [5]. In this 

system, there are four stages, each which have separate sub-stages to define disease 

progression. The earlier stages, i.e. stage I, describes disease which is confined to the 

ovaries or fallopian tubes, whereas the later stages, i.e. stage IV, describes disease with 

distant metastases (excluding peritoneal metastases). In addition to the FIGO system, 

there are many different classification systems used to describe ovarian cancer disease 

progression, including the Silverberg system and a two-tier system proposed by Malpica 

et al [6, 7]. 

 

5.1.1. High-grade serous ovarian cancer morphology 

HGSOC is the most prevalent Type II ovarian cancer, which are characterised by their 

rapid growth and aggression. It is therefore unsurprising that HGSOC is categorized as 

having a high mitotic index per high-power field [7]. In addition, HGSOC cells have high-

grade nuclei with identifiable nuclei figures that are either moderately or poorly 

differentiated [8]. Furthermore, there is distinct disparity in HGSOC cell size, with giant 

mono- or multi-nucleated cells being relatively common. Other cellular characteristics 

associated with HGSOC include; enlarged round nuclei, irregular nuclear membranes, 
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irregular chromatin distribution and hyperchromasia [8]. HGSOC has a variety of 

different growth patterns, including: papillary, glandular, nested and diffuse/solid growth 

patterns, these patterns are specific to each individual tumour with patient-to-patient 

variation [8]. In addition to these morphological characteristics, HGSOC is also 

categorised by its genetic markers. 

 

5.1.2. Genetic fingerprint of high-grade serous ovarian carcinoma  

Understanding the genetic fingerprint of HGSOC is essential when developing novel 

disease models and therapies. HGSOC is characterised by mutations in a number of genes, 

with TP53 being the most prevalent - occurring in 96 % of all HGSOCs [9]. TP53 codes 

for p53 which is commonly regarded as ‘the Guardian of the Genome’ due to its role as 

a tumour suppressor. Wild-type p53 is a transcription factor, which when activated, 

broadly acts by inhibiting cell cycle progression, promoting senescence and inducing 

apoptosis [10]. Mutated p53 may have three different phenotypes: loss-of-function, 

dominant-negative or gain-of-function [11]. Typically, loss-of-function and dominant 

negative mutations makes cells more susceptible to transformation. Whereas gain-of-

function mutations promote cell proliferation, metastasis, and resistance to chemotherapy 

[11, 12]. Gain-of-function mutations in p53 promoting cell proliferation may seem 

contradictory. However, these mutations are known to infer properties which are 

unrelated to wild-type p53 function, including, inhibition of wild-type p53 and 

upregulation of cyclin expression [13, 14]. Interestingly, as discussed further in the 

HGSOC origin section (5.1.3), TP53 is also regarded as a ‘gateway mutation’, with 

HGSOC progenitor cells commonly expressing a mutated TP53 signature [15].  

 



18 
 

Breast cancer type 1 susceptibility protein and 2 (BRCA1 and 2) are important regulators 

of the homologous recombination DNA repair pathway, which is essential for high-

fidelity repair of DNA double-strand breaks [16]. When this pathway is not functional, 

cells repair DNA double-strand breaks via non-homologous end-joining, which is much 

more error prone and can lead to genetic instability [17]. BRCA1 and/or BRCA2 

mutations predispose individuals to develop ovarian cancer, and is mutated in 13% of all 

HGSOCs [9]. BRCA1 has many roles in homologous recombination, and partners many 

proteins in response to DNA damage, including CtIP, whereby it promotes CtIP resection 

of DNA double-strand breaks [18, 19]. Whereas, BRCA2 is believed to act as an 

anchoring protein during homologous recombination, and is essential for nuclear 

localization of Rad51 and strand exchange following DNA damage [20, 21].  

Retinoblastoma protein, or pRB, is coded by the RB1 gene and is an important tumour 

suppressor protein [22]. When active, pRB exists in a hypo-phosphorylated state, 

sequestering E2F transcription factors and inhibiting cell cycle progression from G1 into 

the S-phase [23]. pRB commonly undergoes hyper-phosphorylation by the cyclin-

D/cyclin dependent kinase-4 complex, following this E2F is released and able to interact 

with DNA - promoting the transcription of various cell cycle proteins [24]. A 2001 study 

revealed that the pRB pathway was mutated in 61% of epithelial ovarian cancers [25]. 

The role of pRB and its pathway in epithelial ovarian cancer progression and therapy is 

contentious. Some studies report mutation of this pathway is associated with a worse 

prognosis, when compared with wild-type [26]. However, loss in RB1 expression has also 

been associated with long-term progression free survival and overall survival [27]. 

Whereas, another study demonstrated no association between the pRB pathway and 

patient’s response to chemotherapy [28].  
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5.1.3. High-grade serous ovarian carcinoma origin 

Recent evidence suggests that high-grade serous ovarian cancer could be a misnomer, 

with research indicating that HGSOC actually develops from fallopian tube secretory 

epithelial cells (FTSECs), and not the ovarian surface epithelium. This was first described 

in 1982 when light and transmission electron microscopy revealed that carcinoma cells 

found in the fallopian tube share a similar phenotype to HGSOC cells [29]. These 

progenitor cells are known as serous tubal intraepithelial carcinoma (STIC) cells. Further 

research details how cells from the distal fallopian tubes share a similar p53 ‘signature’ 

as HGSOC – mutations in TP53 concomitantly with stabilisation of p53 [15, 30]. This is 

further supported by a genetic study which showed HGSOC cells share a more similar 

genetic profile with fallopian tube epithelial cells compared to the ovarian surface 

epithelium [31]. In addition, a particularly interesting study detailed how deletions of 

BRCA, TP53 and PTEN (phosphatase and tensin homolog), genes linked with HGSOC, 

led to the transformation of FTSECs into HGSOC cells in an in vivo model [32]. 

Shortened telomeres are recognised as an early hallmark of tumorigenesis, being shown 

to contribute to chromosomal instability [33]. However, overly-short telomeres are 

incapable of supporting extensive mitosis which typifies HGSOC. Telomerase, the 

enzyme responsible for the synthesis of telomeric DNA, is expressed in HGSOC cells, 

but not in ovarian surface epithelial cells [34]. Kuhn et al revealed that STIC cells had 

significantly shorter telomeres than normal fallopian tube epithelial cells and HGSOC 

cells [35]. Kuhn proposed that STIC cells underwent telomere shortening, before 

telomerase activity elongated telomeres, enabling continued cell division - supporting the 

hypothesis that STIC cells are HGSOC progenitors.  It has been suggested that mutated 

FTSECs develop in the fimbrial region of the fallopian tube, before migrating to the 

ovaries, as shown in Figure 1 [36].  
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Figure 1. Origins of high-grade serous ovarian cancer. HGSOC develops within the 

fimbrial region of the fallopian tube (distal region). These cells further mutate and migrate 

to the ovaries before further invasion into the peritoneal cavity.  

 

5.1.4. High-grade serous ovarian cancer metastasis and invasion 

Following the establishment of the tumour in the ovaries, HGSOC cells are then able to 

spread according to the ‘seed and soil’ hypothesis proposed by Stephen Paget in 1889, 

which states cancer metastasis is not random, but depends on the specific crosstalk 

between cancer cells and the tissue microenvironment [37]. The peritoneum and omentum 

are recognised as being the primary secondary sites for HGSOC metastasis, and are 

primarily composed of adipocytes [38]. In vitro studies revealed that HGSOC cells 

promote primary omental adipocyte secretion of interleukin-6 and -8 (IL-6 and IL-8), 

which consequently promote HGSOC homing, migration and invasion [39]. This study 
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highlights how the primary tumour is able to manipulate secondary sites to encourage 

cancer cell seeding.  

The main mechanism of HGSOC metastasis is not the classic hematogenous route, rather 

HGSOC cells are carried by the physiological movement of the peritoneal fluid to the 

peritoneum and omentum, in a process termed direct transcoelomic dissemination [38, 

40]. Before undergoing metastasis, HGSOC cells undergo epithelial-to-mesenchymal 

transition (EMT), in which the cells gain a more invasive and mesenchymal phenotype. 

Loss in E-cadherin expression is commonly associated with the promotion of EMT, due 

to the role E-cadherin plays in cell-cell interactions [41]. Matrix-metalloproteinase 

(MMP)-9 dependent cleavage of the E-cadherin ectodomain promotes HGSOC cell or 

cluster shedding from the primary tumour into the ascites [42]. 

Though HGSOC is typically confined to the peritoneal cavity in 85% of patients, distant 

metastases have been recorded, with the brain, lungs and liver being recognised secondary 

sites [43, 44]. This demonstrates the clinical importance of non-orthodox HGSOC 

metastasis. Indeed, Pradeep et al demonstrated hematogenous metastasis to the omentum 

using a parabiosis mouse model [45]. In this system, the circulatory system of two mice 

were surgically joined and the host mouse injected intra-abdominally with HGSOC cells. 

After a period of up 3 months, omentum metastases can be observed in the guest mouse.  

 

5.1.5. The high-grade serous ovarian cancer microenvironment and vasculature 

There is a growing understanding of how tumours do not exist as an isolated collection 

of cancer cells, but rather a malignant organ featuring cancer cells, stroma, blood cells 

and the vasculature [46, 47]. Indeed, HGSOC cells drive a change in the local 
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microenvironment with an increased density of cancer-associated fibroblasts (CAFs), 

leukocytes and macrophages, and a reduced density of adipocytes [46].  

CAFs are a major component of the tumour microenvironment, and are believed to be 

‘re-programmed’ native fibroblasts [48]. Gene expression analysis revealed that CAFs 

feature a significantly dysregulated cytokine, chemokine and growth factor expression 

when compared with normal fibroblasts. [49]. The role of CAFs in disease progression is 

extensive, including promoting tumour growth, invasion, EMT, angiogenesis, chemo-

resistance and remodelling the microenvironment [48].  

Tumour-associated macrophages (TAMs) constitute a major component of the tumour 

microenvironment and have a dual phenotype, being either anti-tumourigenic (M1) or 

pro-tumourigenic (M2) [50]. M2 macrophages promote ovarian cancer cell proliferation 

in vitro via the release of epidermal growth factor (EGF) [51]. In addition, TAMs 

accumulate at hypoxic sites, where they induce angiogenesis through the release of a 

number of growth factors and cytokines, including VEGF and IL-8 [52]. The infiltration 

of M2 TAMs in epithelial ovarian cancer is associated with a poor prognosis [53]. 

HGSOC is characterised by intra-peritoneal tumours and ascitic fluid build-up [54]. Both 

of these may be partly attributed to the formation of an extensive, immature vasculature 

[55]. The formation of an aberrant tumour microvasculature is recognised as an early 

event in epithelial ovarian cancer progression and coincides with the growth of intra-

peritoneal solid tumours in vivo [56, 57]. Vessel formation is driven by a number of cells 

in the HGSOC tumour microenvironment, including cancer cells, CAFs and TAMs via 

the release of various angiogenic stimuli, including VEGF [54]. The intra-tumour levels 

of VEGF are inversely correlated with disease progression and patients survival [58, 59].  
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Angiogenesis is typically believed to promote tumour growth and disease progression via 

delivery of nutrients and oxygen, and removal of waste products [60]. In addition, 

endothelial cells promote HGSOC cell proliferation and chemo-resistance through 

angiocrine signalling [61]. Angiogenesis is driven by VEGF released by a number of 

cells, in vivo studies have also linked VEGF with the formation of an immature, hyper-

permeable vasculature [62]. This ‘leaky’ vasculature is partly responsible for the 

extensive ascites accumulation observed in HGSOC, due to the movement of high protein 

fluid from the intravascular compartment to the peritoneal cavity [55]. These malignant 

ascites are responsible for anorexia, insomnia, fatigue, low capacity to walk, pain and 

lower limb discomfort in HGSOC patients [63]. 

As discussed further in section 5.2.5, pericytes are associated with endothelial cells and 

promote vascular stability [64]. Cancer-associated vasculature is characterised by sparse 

pericyte coverage, this is partly responsible for the observed vessel hyperplasia, hyper-

permeability, and poor junction expression [65]. This phenotype is replicated in vivo, as 

IGROV-1 xenografts promote the formation of an immature vasculature, featuring poor 

pericyte coverage [66]. Interestingly, stroma associated pericyte expression is highly 

predictive for poor patient prognosis [67]. Indeed, in vitro ovarian cancer cell 

proliferation and invasion was promoted with the addition of pericytes. In addition, 

pericytes promoted ovarian cancer growth and metastases in vivo, with no effect on the 

vasculature. This suggests pericytes promote disease progression independently of their 

role in the vasculature. 

 

5.1.6. High-grade serous ovarian cancer therapy 

Regardless of the continued development of novel therapies, the 5-year survival rate of 

HGSOC has consistently stayed around 40 - 50% over the past 50 years [2], with a recent 
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study showing the median overall survival (OS) rate of patients with HGSOC being 40.7 

months [68]. The lethality of HGSOC is related to its general late stage diagnosis, with 

the 5-year survival rate significantly decreasing from 90% to 15%, when diagnosed at an 

early stage (when the cancer is confined to the ovaries) compared with a late stage 

diagnosis [69]. The current standard first-line therapy involves cytoreductive surgical 

debulking, followed by adjuvant therapy with taxanes and platinum-based 

chemotherapeutics - often paclitaxel and carboplatin [70, 71]. 

Carboplatin is a second-generation cisplatin derivative commonly used in HGSOC 

therapy. Carboplatin and cisplatin share a similar mechanism-of-action, briefly, they 

crosslink with DNA, thereby inhibiting DNA replication and transcription, and leading to 

cell death [72, 73]. Carboplatin primarily binds to the N7 atoms of the imidazole rings of 

guanosine and adenosine, forming mono-adducts, intra-strand DNA crosslinks and inter-

strand DNA crosslinks [74]. Studies have suggested that 1,2-d(GpG) intra-strand DNA 

crosslinks are the main cytotoxic DNA lesion formed by carboplatin [75]. The cisplatin 

trans isomer, trans-diamine-dichloroplatinum (II) (trans-DDP), is unable to form 1,2 

intra-strand DNA crosslinks and is known to be biologically inactive. In addition, high 

mobility group protein B1 (HMGB1) recognises and binds the 1,2-d(GpG) intra-strand 

DNA crosslinks induced by platinum agents, whereby, through steric blocking inhibits 

translesion synthesis [76]. This DNA-platinum-HMGB1 complex is additionally stated 

to inhibit DNA transcription and replication, and initiate apoptosis [74].  

Carboplatin is typically regarded as less efficacious than cisplatin, though treatment also 

displays fewer side-effects [73, 77]. This is related to the chemical structures of these 

compounds, which are displayed in Figure 2. Both compounds feature a doubly charged 

platinum ion surrounded by four ligands; two amine ligands, and either two chloride ions 

or a carboxylate compound (1,1-cyclobutanedicarboxylate), respectively. The amino 
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groups found in cisplatin and carboplatin are strongly bound to the central platinum ion, 

however chloride and 1,1-cyclobutnedicarboxylate act as leaving groups following 

hydrolysis [73]. The hydrolysis of carboplatin and cisplatin invokes the formation of a 

positively charged intermediate, which when transported to the nucleus is able to 

covalently and electrostatically bond with the N7 atoms of the imidazole rings of guanine 

and adenine - forming the aforementioned platinum-DNA mono-adducts and inter- and 

intra-strand di-adducts [78]. Carboplatin’s 1,1-cyclobutnedicarboxylate ligand is a poor 

leaving group compared with chloride, hence reducing carboplatin’s reactivity and DNA 

binding rate when compared with cisplatin. Kinetic studies revealed that the formation of 

carboplatin-DNA adducts is around 100-fold slower compared with cisplatin-DNA 

adducts [79]. 

As described in section 5.1.2, BRCA1 and BRCA2 mutations are commonly featured in 

HGSOC [9]. Indeed, the cumulative ovarian cancer risk to age 80 years was 44% and 

17% for BRCA1 and BRCA2 mutation carriers, respectively [80]. The genetic makeup 

of HGSOC makes certain populations more susceptible, e.g. Ashkenazi Jewish women, 

who are well known to have mutations in BRCA1 and BRCA2 [3, 9]. This predisposition 

has led some groups to propose a personalized medicine approach to HGSOC treatment, 

and have suggested at-risk individuals take low-toxic drugs to limit HGSOC development 

[3]. Studies have shown oral contraception reduces the risk of developing ovarian cancer 

in both BRCA1 and BRCA2 populations [81]. Due to the lethality of HGSOC, reducing 

incidences is a particularly effective tactic in reducing mortality [82]. 

As described, HGSOC is significantly more lethal when diagnosed at a late stage than an 

early stage [69]. As such, improving early diagnosis of HGSOC is imperative in reducing 

the lethality.  However, early detection of HGSOC is challenging, as until the tumour has 

metastasized from the pelvic region the disease is largely asymptomatic and only presents 
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symptoms at later stages of disease progression. To overcome this, a recent clinical trial, 

the Collaborative Trial of Ovarian Cancer Screening, determined that with annual 

multimodal screening with serum CA125 (cancer antigen 125) interpreted with use of the 

risk of ovarian cancer algorithm, there is a significant reduction in mortality [83]. 

 

Figure 2. Cisplatin and carboplatin chemical structures. A) Cisplatin structure 

containing chloride leavings groups. B) Carboplatin structure containing a 1,1-

cyclobutnedicarboxylate leaving group. Figure adapted from [84]. 

 

Poly(ADP-ribose) polymerase (PARP) inhibitors are a novel class of drug used in the 

treatment of BRCA1/2 positive breast and ovarian cancer [85]. PARP repairs single-

strand breaks in DNA, via the recruitment of proteins into a repair complex at the site of 

DNA damage [86]. Inhibition of PARP results in the accumulation of single-strand breaks 

and the stalling of replication forks, which promotes double-strand DNA breaks [87]. In 

cells with BRCA mutations, these double-strand break are not repaired via homologous 

recombination, which results in genetic instability and cell death [85]. A recent clinical 

trial revealed that olaparib, a PARP inhibitor, increased the rate of freedom from disease 

progression and from death after 3 years from 27 to 60% [88]. This study highlights the 

effectiveness of PARP inhibitors in the treatment of BRCA-mutated ovarian cancer. 
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Angiogenesis is an important regulator of tumourigenesis, with tumours being limited to 

1-2 mm diameter before requiring vessel formation [60]. Indeed, high micro-vessel 

density is recognised as an independent marker of poor prognosis in ovarian cancer [89]. 

Due to the importance of vessel formation many drugs have been developed which target 

this system, including the recombinant humanized monoclonal antibody, bevacizumab. 

Bevacizumab targets the angiogenic stimulant, vascular endothelial growth factor - A 

(VEGF-A), and inhibits its interaction with VEGF receptors - 1/2 (VEGFR-1/2) [90]. 

Two large phase III clinical trials, GOG218 and ICON7, assessed bevacizumab’s 

suitability as a first-line treatment in ovarian cancer (administered with carboplatin and 

paclitaxel) [91, 92]. Both GOG218 and ICON7 concluded bevacizumab significantly 

improved the median progression-free survival (PFS) of women with ‘newly diagnosed 

ovarian cancer who had undergone primary surgery’, though no overall improvement in 

OS was observed. However, meta-analysis of the ICON7 study revealed that 

bevacizumab significantly improved the median OS for patients with sub-optimally 

debulked disease, stage IV ovarian cancer and inoperable stage III ovarian cancer [93]. 

Due to the success of bevacizumab in HGSOC therapy, further analysis of the interactions 

between the vasculature and ovarian cancer is shown in this thesis. 

 

5.2. Angiogenesis and vasculogenesis  

When referring to vessel formation, the nomenclature refers to processes with subtle 

differences. Angiogenesis refers to the formation of blood vessels from the pre-existing 

vasculature, whereas vasculogenesis is the de novo formation of vessels [94]. 

Vasculogenesis is typically believed to play an important role in the establishment of the 

vasculature from angioblasts during embryogenesis [95]. Due to this, the role of 

vasculogenesis in adults has been less extensively studied, though research has shown 
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there is some de novo vessel formation from bone marrow-derived cells [96]. 

Angiogenesis is typically regarded as the predominant mechanism to form new vessels in 

adults, with implications in wound healing, growth, and the action of female reproductive 

organs [97]. Both of these processes are essential for normal development, with aberrant 

vessel growth linked with a number of diseases, including cancer, psoriasis, arthritis, 

retinopathies, and atherosclerosis [97]. To better understand the role vessel formation 

plays in these diseases, it is important to understand the mechanism behind the 

physiological processes.  

 

5.2.1. The role of VEGF in vessel formation 

Vessel formation is controlled through a number of pro-angiogenic and anti-angiogenic 

factors. Principally amongst the pro-angiogenic compounds are the VEGF family of 

signalling proteins. This family of proteins contains many homologs, including VEGF-

A, VEGF-B, VEGF-C, VEGF-D and placenta growth factor (PIGF), which each have 

different signalling specificities and mechanisms [98]. VEGF-A is primarily linked with 

the promotion of angiogenesis, whereas other members are typically linked with other 

processes, such as VEGF-C promoting lymphangiogenesis [99]. VEGF-A is expressed as 

various splice variants, with VEGF-A165 and VEGF-A121 being the most abundant 

isoforms [100]. 

VEGFs bind with a number of different receptors, including VEGFR-1, -2 and -3, 

neuropilins 1 and 2, and heparan sulfate proteoglycans  [101]. However, VEGF-A’s 

primary mechanism for inducing vessel formation is binding to, and signalling through, 

VEGFR-2, which are receptor tyrosine kinases extensively expressed by endothelial cells 

(see Figure 3) [102]. VEGF-A homodimers bind individual VEGFR-2 monomers, 
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inducing receptor dimerization and ligand-dependent tyrosine phosphorylation [103, 

104]. VEGFR-2 activation promotes various downstream signalling cascades important 

in cell proliferation and survival [104]. In vitro experiments revealed VEGFR-2, but not 

VEGFR-1, was responsible for endothelial survival in serum-starved culture, through 

downstream activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B 

(Akt) [105]. In addition, VEGFR-2 dimerization and phosphorylation activates the Raf-

1-MEK-MAPK pathway and mitogenesis, in a phospholipase Cγ (PLCγ) and protein 

kinase Cβ dependent manner [106].  

 

Figure 3. Vascular endothelial growth factor receptor 2 activation and downstream 

signalling. Following VEGF-A binding, VEGFR-2 dimerizes and intra intracellular 

tyrosine kinase domains are phosphorylated. This promotes activation of downstream 

signalling molecules leading to increased cell division and survival.  

 

5.2.2. Mechanism of vasculogenesis  

Vasculogenesis is largely considered to promote vessel formation during embryogenesis. 

However, it has also been shown to be a regulator in adult vessel formation. Drake clearly 

defined the steps in embryonic vasculogenesis as: 1) angioblast differentiation; 2) blood 



30 
 

island formation; 3) angioblast sprouting; 4) organization of isolated vasculature into an 

interconnected vascular plexus; 5) endothelialisation and lumenisation [107].  

Vasculogenesis is highly regulated by a number of different molecular mechanisms, 

principally VEGF [107, 108]. Indeed, VEGFR-2 knockdown in mice is embryonic lethal, 

with embryos dying in utero between 8.5 - 9.5 days post coitum [109]. This is due to 

retardation of endothelial and haematopoietic development, with reductions in blood 

island formation, blood vessel growth and the number of haematopoietic progenitors. In 

addition, increased ectopic concentrations of VEGF have been shown to induce 

malformations in vessel structure in Japanese quail embryos, including abnormally large 

lumen formation [110]. Krah et al revealed that basic fibroblast growth factor (bFGF) 

plays an integral role in vasculogenesis, as addition of bFGF to quail blastodisc cells 

significantly promotes the formation of vascular structures [111].  

As stated, vasculogenesis is also important in adult vessel formation. An interesting study 

by Shi et al demonstrated this using a prosthetic implanted in a canine, in a process they 

termed ‘fallout endothelialization’ [112]. It was hypothesised that following the 

implantation of the prosthetic, re-vascularisation of the graft would occur from the 

margins from elongating vessels, however Shi demonstrated that vascularisation also 

occurred from non-marginal areas of the prosthesis [112]. Further research has suggested 

that this neovascularisation occurs from circulating endothelial progenitor cells, which, 

following invasion into the prosthesis, were able to form an initially isolated vasculature 

[113]. In this study, Ashara et al demonstrated that circulating endothelial progenitor cells 

were found in ischaemia tissue and tumours, suggesting adult vessel formation is not 

entirely reliant on angiogenesis.  
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The molecular mechanisms behind vasculogenesis are less well-defined when compared 

with angiogenesis. In addition, the mechanisms which have been explored have focused 

on embryogenesis, which may rely upon different mechanisms than postnatal 

vasculogenesis. 

 

5.2.3. Mechanism of angiogenesis  

Angiogenesis mechanisms have been much further researched than adult vasculogenesis, 

with it being regarded as the predominant process promoting postnatal vascularisation. 

There are two different types of angiogenesis - sprouting and intussusceptive 

angiogenesis [114]. Sprouting angiogenesis has been studied in greater detail and, as the 

name would suggest, involves the sprouting of endothelial cells towards an angiogenic 

stimuli. Whereas, intussusceptive angiogenesis, also known as splitting angiogenesis, 

involves the dividing of a single vessel into two [114]. Both sprouting and intussusceptive 

angiogenesis are important in vessel formation within the ovaries [115].  

 

5.2.4. Sprouting angiogenesis mechanism 

The mechanism behind sprouting angiogenesis can be divided into different stages, there 

is the initial increase in vascular permeability coupled with basement membrane 

degradation, followed by endothelial cell proliferation and migration, and finally vessel 

stabilisation and lumen formation [114]. However, when discussing these individual 

mechanisms, it is important to consider them as complex dynamic processes, rather than 

linear relationships.  

The basement membrane (BM) is similar to the extracellular matrix, however is denser 

and always in contact with cells [116]. It is an amorphous, dense, sheet-like structure 
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composed of around 50 different proteins, including type IV collagen, laminin and 

heparan-sulphate proteoglycans [116]. During angiogenesis, the BM is degraded by 

various matrix-degrading proteins, including MMPs, which are produced by endothelial, 

stromal and cancer cells [117]. Endothelial cells in contact with the intact BM are 

typically kept in a quiescent state through contact with collagen IV [118]. Following the 

degradation of the BM by matrix-degrading proteins, sequestered angiogenic growth 

factors are released, further promoting endothelial migration and proliferation, and 

detaching pericytes from endothelial cells [116]. In addition, endothelial migration and 

proliferation is promoted through the exposure of pro-angiogenic interstitial provisional 

matrix components, including laminin, the expression of which was found to correlate 

with newly formed vessels and tip cells [118].  

Following BM degradation, endothelial cells undergo a process of migration and 

proliferation. Firstly, ‘tip’ cells are selected, these cells have long, thin filopodia which 

read guidance cues and migrate towards the source of angiogenic stimuli  [119]. Tip cells 

are selected according to VEGF and Notch/Delta-like ligand 4 (Dll4) signalling, which is 

further illustrated in Figure 4 [120-123]. VEGF binds VEGFR-2 on the surface of 

endothelial cells, this promotes an upregulation of Dll4 in tip cells [121]. Consequently, 

Dll4 interacts with Notch receptors on stalk cells, promoting VEGFR-1 expression and 

inhibiting VEGFR-2 expression  [124, 125]. Jagged-1 is expressed by stalk cells and 

inhibits Notch signalling in tip cells, attenuating VEGFR-1 and promoting VEGFR-2 

expressions [120]. The actual selection of the tip cells depends upon small stochastic 

differences in VEGF concentration within the local environment and the relative 

expression of VEGFR-1 and -2, which may give an advantage in tip cell selection [126].  

The direction of angiogenic sprouting is controlled by the filopodia on tip cells, which 

was shown by investigating VEGF signalling in postnatal murine retina [122]. It has been 
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proposed that the filopodia attach to the matrix, and following contraction of the actin 

filaments within, pull the cell along towards the angiogenic source [127]. Concurrently, 

stalk cells proliferate, projecting the nascent vessel to the angiogenic source [122, 128]. 

Endothelial expansion from the stalk cells, rather than tip cells, was shown using Ki67 

staining and BrdU labelling [122]. Notch signalling has been extensively demonstrated 

to inhibit endothelial proliferation within in vitro and in vivo models [129, 130]. 

Harrington et al demonstrated that overexpression of the Notch ligand, Dll4, attenuated 

HUVEC proliferation via downregulation of VEGFR-2, impaired activation of the 

MAPK/ERK pathway, and upregulation of soluble VEGFR-1 [131]. Considering the 

upregulation of Notch in proliferative stalk cells and downregulation in non-proliferative 

tip cells, it seems counterintuitive that Notch inhibits endothelial expansion. Notch-

regulated ankyrin repeat protein (nrarp) is a downstream signalling protein that 

expression is regulated by Notch  [132]. Studies have shown that nrarp knockdown mice 

have significantly reduced endothelial cell proliferation and vessel coverage, due to 

nrarp’s role as a negative regulator of Notch [133, 134]. In addition to attenuating Notch 

signalling, nrarp is an important mediator of Wnt induced angiogenesis [135]. Nrarp 

inhibits the ubiquitination of the downstream signalling protein lymphoid enhancer factor 

1 (Lef1) [136], which through interactions with beta-catenin (β-cat) promote vessel 

formation [135]. This could be via promotion of cyclin D1 expression which drives cell 

cycle progression [137]. In addition to canonical Wnt signalling, non-canonical 

signalling, induced by Wnt5a, is also implicated in angiogenesis [138]. Masckauchán et 

al details how Wnt5a signalling induces endothelial cell proliferation through ERK 1/2 

phosphorylation and upregulation of Tie-2 (tyrosine kinase with immunoglobulin and 

EGF homology domains - 2).  

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Masckauch%26%23x000e1%3Bn%20TN%5BAuthor%5D&cauthor=true&cauthor_uid=17035633
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Figure 4. VEGF and Notch signalling within angiogenic sprouts. VEGF induced 

VEGFR-2 signalling promotes tip cell selection through increase Dll4 expression, which 

through Notch signalling in neighbouring stalk cells down-regulates VEGFR-2 

expression. Jagged-1 in turn inhibits Notch signalling in tip cells. Nrarp coordinates 

Notch and Wnt signalling via a β-catenin Lef1 complex which drives cyclin D expression 

and cell cycle progression. 

 

Following sprouting towards the angiogenic source, the vessel is stabilised and lumen 

formed to ensure correct function - though in cancer these vessels are more aberrant. 

Lumen formation in the endothelium is believed to occur through three main processes; 
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cell hollowing, cord hollowing and budding [139]. During cell hollowing, intracellular 

vacuoles form throughout the endothelial cells and alight with vacuoles in adjacent cells, 

before fusing and forming a continuous network [140]. Whereas cord hollowing refers to 

the process of extracellular vacuole fusion and cell rearrangement. Zovein et al details an 

interesting mechanism whereby β1 integrin ablation in nascent endothelium, disrupts cell 

polarity and adhesion marker localization, concomitantly promoting the accumulation of 

intracellular vacuoles and occlusion of vessels - identifying β1 integrin as an important 

mediator of lumen formation [141]. 

The angiopoietin (Ang) and Tie axis is an important mediator of vessel stabilisation and 

maturation [142]. Tie receptors include Tie-1 and Tie-2, and are extensively expressed 

by endothelial cells [142]. Tie-1 is an orphan receptor with no known ligand. Regardless, 

murine null mutants of Tie-1 developed severe oedema and died between days 13.5 and 

14.5 of gestation - suggesting Tie-1 plays an integral role in vessel stabilisation [143]. 

Angiopoietins are a family of glycoproteins and are known ligands of Tie-2 receptors, 

family members include Ang-1, -2, -3 and -4. Interactions between Ang-1 and Tie-2 have 

been extensively linked with vessel maturity, cell-cell adhesion, cell survival and reduced 

vessel permeability [144-146], this is through various downstream signalling pathways 

including the activation of Akt and MAPK, and inhibition of NFκB via activation of 

ABIN-2 [147-149]. Ang-1 has been proposed to promote vessel stability through the 

recruitment of pericytes, or perivascular cells [147, 150]. The mechanisms behind this are 

unknown, but ultrastructural examination has shown Ang-1 knockout mice have an 

aberrant endothelium lacking perivascular coverage [151]. Interestingly, Uemura et al 

details how following the abolition of perivascular coverage, via the addition of a platelet-

derived growth factor receptor-beta (PDGFR-β) antagonist, the addition of Ang-1 
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restored the hierarchical vascular architecture and protected against retina oedema and 

haemorrhaging [152]. 

 

5.2.5. Pericytes and the vasculature 

Pericytes or perivascular cells are essential components of a stable and mature 

vasculature, and are located within the basement membrane surrounding the endothelium 

[153]. Pericytes were first described in the 19th Century, since then their role has been 

slowly elucidated, and are now recognised to play an important role in maintaining 

vascular hierarchical architecture, reducing vascular permeability and promoting vessel 

stability [152, 154-156]. The ratio of pericytes-to-endothelial cells changes depending on 

location, with a positive correlation being linked with endothelium function. It is therefore 

unsurprising that the blood-brain-barrier contains the highest ratio, with 1:1 pericytes-to-

endothelial cells [64, 157]. Further estimates have predicted that the ratio of pericytes-to-

endothelial cells ranges from 1:1 - 1:10, with abluminal endothelial coverage ranging 

between 70 - 10% [64]. This range was suggested according to experimental observations, 

but in addition, if much lower ratios were observed, significant proportions of the 

endothelium would not be in contact with pericytes - a typical pathophysiological 

observation [64].  

Pericytes are notoriously difficult to identify, as such, many studies refer to perivascular 

or stromal cells when referring to pericyte-like cells [158, 159]. This difficulty is due to 

there being no universally accepted marker which is specific and stable in expression. 

Some commonly used pericyte markers include, chondroitin sulfate proteoglycan 4 

(NG2), PDGFR-β and alpha-smooth muscle actin (α-SMA) [160]. However, each of these 

markers are additionally expressed by other cells types, i.e. α-SMA being expressed by 
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smooth muscle cells and myofibroblasts [161], and as such, are not entirely reliable.  But 

though difficult to identify, the role pericytes play in vessel formation and stability has 

been extensively studied. 

 

5.2.6. The PDGF-B - PDGFR-β axis  

The PDGF-B - PDGFR-β axis plays an essential role in the recruitment of pericytes to 

nascent vessels, and is perhaps the greatest studied system when considering pericyte - 

endothelial interactions [155]. PDGFR-β is a receptor tyrosine kinase, which upon PDGF-

B binding, undergoes receptor dimerization that activates downstream signalling 

cascades, including the PLCγ and PI3K pathways [162]. Loss of PLCγ and PI3K 

interactions with PDGFR-β in mesangial cells and mouse embryonic fibroblasts causes a 

reduction in cell proliferation and migration [162]. However, this same effect was not 

observed in an in vivo mouse model, suggesting some compensatory mechanism. Indeed, 

activation of PDGFR-β has also been linked with downstream activation of the 

ERK/MAPK pathway, which is known to drive PDGF-B induced cell proliferation in 

NIH3T3 cells, a commonly used PDGF-B sensitive fibroblast cell line [163]. This could 

suggest that following the abolition of downstream PLCγ and PI3K signalling, PDGFR-

β could alternatively promote cell proliferation through the ERK/MAPK pathway. 

PDGF-B may function as either a hetero- or homo-dimer (PDGF-BB or PDGF-AB) but 

is more commonly considered as the homodimer when interacting with PDGFR-β. 

PDGF-B is commonly expressed by endothelial cells [164]. Indeed, Hellström et al 

revealed that it is immature and sprouting endothelial cells that express PDGF-B, 

promoting pericyte recruitment to nascent vessels [165]. They went on to show that 
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pericytes proliferate at sites of PDGF-B expression, highlighting the role of PDGF-B as 

a pericyte mitogen. 

The importance of pericytes in normal endothelium development is highlighted by a 

number of PDGFR-β or PDGF-B knockout mouse models [155, 165, 166]. One model 

revealed how the abrogation of pericyte interactions with endothelial cells promoted 

endothelial hyperplasia, increased capillary diameter, and reduced vessel permeability 

[166]. Hellström suggests that this increase in vascular permeability may be a result of 

tight junction disruption observed in PDGF-B and PDGFR-β knockout embryos.  

 

5.2.7. Vascular junction proteins 

The barrier properties of the endothelium rely upon a number of junction protein 

complexes, most notably tight junctions, but also adheren junctions [167]. Tight junctions 

are the most apical located intercellular junction complex in the polarized endothelium, 

and function by inhibiting the diffusion of polar substances from the blood into the 

basolateral compartments [168]. In addition, tight junctions act as fences to 

transmembrane proteins and lipids, ensuring they remain in their distinctive apical or 

basolateral domains. Claudins are a family of proteins that have been linked with playing 

an integral role in barrier formation in tight junction, and may function as either barrier- 

or pore-forming structures [169]. This is thoroughly described by Günzel et al¸ who 

extensively details the properties of a number of individual claudin proteins [169]. 

Zonula occludens-1 (ZO-1) is a junctional adaptor protein, essential for the stabilisation 

and function of tight junctions [170, 171]. In vitro knockdown of ZO-1 in epithelial cells 

results in increased solute permeability, which may be recovered with the expression of 

an N-terminal construct containing the PDZ, SH3, and GUK domains of ZO-1 [170]. This 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hellstr%26%23x000f6%3Bm%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11331305
https://www.ncbi.nlm.nih.gov/pubmed/?term=G%26%23x000fc%3Bnzel%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23589827
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was repeated in endothelial cells by Tornavaca et al, who demonstrated ZO-1 knockdown 

increased transendothelial permeability, due to loss in claudin-5 expression [172]. 

Highlighting the importance of ZO-1 in development, ZO-1 homozygous knockout 

mouse models are embryonic lethal, with defective angiogenesis and extensive apoptosis 

observed [173]. Interestingly, Katsuno et al reported that ZO-1 knockout led to the 

development of no identifiably mature or remodelled endothelial vessels after 9 days 

compared with wild-type mice. Similarly, ZO-1 siRNA inhibited vessel formation in a 

3D microcarrier based fibrin gel angiogenesis assay [172]. Though ZO-1 is primarily 

considered to interact with tight junction proteins, it is also an important regulator of 

adheren junctions [174] 

Adheren junctions are located more basally than tight junctions and are important 

mediators of cell-cell adhesion, intracellular signalling, and actin cytoskeleton 

remodelling [174]. VE-cadherin (VE-cad) is an essential component of adheren junctions 

and is anchored to the actin cytoskeleton by a number of intracellular adheren junction 

proteins, including the catenin family members; α-, β-, δ-, and γ-catenin (cat) [175]. 

Similar to what is reported in ZO-1 knockout mice, VE-cad-deficient mice are embryonic 

lethal due to vascular defects [176]. Interestingly, a nascent vascular plexus forms, but 

fails to mature and remodel, leading to extensive vessel regression and endothelial 

apoptosis. This was due to preventing the formation of a VE-cad, β-cat, PI3K and 

VEGFR-2 complex, which is responsible for VEGF-A induced activation of downstream 

Akt and Bcl-2, and prevention of endothelial apoptosis. The role of VE-cad in vascular 

integrity was further clarified by Corada et al, who revealed that upon the treatment of a 

VE-cad blocking monoclonal antibody an increase in vascular permeability was observed 

in the heart and lungs of an in vivo mouse model [177].   
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5.3. High-grade serous ovarian cancer models 

The development of novel models of HGSOC, either in vitro or in vivo, offers an 

opportunity to further understand disease pathogenesis. There are currently many 

different models of HGSOC, each with their own distinct advantages and disadvantages. 

 

5.3.1. In vivo models of high-grade serous ovarian cancer 

Patient derived xenograft (PDX) models are commonly used in vivo representations of 

HGSOC. In PDX models malignant cells are extracted from the patient tumour and 

injected directly into immune-deficient mice, however, more commonly, mice are 

injected with in vitro grown ovarian cancer cells lines (xenograft mouse models). Cells 

are typically injected either intra-peritoneally, intra-bursally or subcutaneously, where 

they then spread throughout the abdomen and peritoneum - resembling the metastatic 

human disease.  The advantage of transferring cells directly from the tumour to mice, is 

culturing cells in vitro prior to transfer enables the development of mutations affecting 

morphology, motility, invasion and proliferation [178]. Human tissue hetero-

transplantation is an advanced xenograft model, where the native stroma and extracellular 

matrix are also transferred to the host mouse. Using this system, Xu et al demonstrated a 

high growth rate of tumours following implantation of tumour specimens in the intra-

abdominal gonadal fat pads of severe combined immune-deficient (SCID) mice [179]. 

This success was suggested to be as a result of cancer cells being integrated within a 

native microenvironment, enabling them to more efficiently assimilate within the host 

environment. In addition, this technique lessens the reduction in cell heterogeneity which 

inevitably occurs when implanting ovarian cancer cell lines. Due to this, and the added 

native stroma and matrix, surgical hetero-transplantation allows the PDX model to more 

closely mimic HGSOC [179]. A proposed model by Elkas et al details the creation of an 
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ovarian carcinoma PDX model through the intraperitoneal injection of tumorigenic 

‘slurry’ [180]. This model replicated tumour progression through the development of 

metastatic spread and bloody ascites. In addition, when administered with an adenoviral-

mediated p53 gene therapy, tumour weight significantly decreased, suggesting these to 

be suitable models to investigating novel therapies. This study highlights the effectiveness 

of PDX models as systems to study novel therapeutics. 

Genetically engineered mouse models (GEMM) are another commonly used in vitro 

model of HGSOC. An earlier mentioned study by Perets et al details the creation of 

GEMMs expressing a Tet on-off system to knockdown BRCA, TP53 and PTEN 

expression via a (paired box 8) PAX8 promoter – specifically targeting the fallopian tube 

cells [32]. This study demonstrated with the knockdown of HGSOC marker genes, Dox-

activated fallopian tubes undergo increased secretory cell proliferation, loss of cell 

polarity, cellular atypia and serous histology – mimicking the STIC histology. 

Interestingly, this progresses into a ‘pseudo-HGSOC’ involving tumour metastasis to the 

ovaries and peritoneal cavity. This study demonstrates the importance of understanding 

disease biology when developing a model for cancer.  

 

5.3.2. In vitro models of high-grade serous ovarian cancer 

Traditional in vitro models cultures cells on tissue culture plastic in two-dimensional (2D) 

monolayers. A recent investigation into the genomic profiles of 47 commonly used 

HGSOC cell-lines has demonstrated that many are unrepresentative of the disease [181], 

this includes some of the most popular cell lines such as SKOV3 and IGROV1. This is 

highlighted by the twelve most suitable candidates to represent HGSOC accounting for 

only 1% of PubMed citations describing HGSOC models in 2013, out of the 47 
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investigated [181]. According to this study, cell lines which most represent HGSOC 

genetically are often misclassified, i.e. KURAMOCHI cells are classified as 

undifferentiated carcinoma. The failure of popular cell lines to not accurately represent 

HGSOC is undoubtedly varied, with miscommunication in the scientific community 

undoubtedly playing a role [182]. In addition, the cell lines investigated have been 

cultured for many years which may impact on their genetic makeup [183]. These studies 

highlight the importance of selecting a representative cell line for studies, particularly 

when evaluating drug response.  

Traditional two-dimensional (2D) models of disease are critiqued for their validity in 

representing observed pathophysiology. Three-dimensional (3D) models are being 

explored as more accurate representations of the tumour microenvironment, which better 

mimic the in vivo response during drug development  [184]. Typically, 3D models involve 

the embedding of cells within a natural, or artificial 3D hydrogel. Natural hydrogels, such 

as MatrigelTM and fibrinogen, are currently the gold-standard 3D matrix due to their 

inherent extracellular matrix (ECM)-like biological properties, with cells displaying high 

viabilities within these system [185]. However, manipulation of biological and 

mechanical properties of natural hydrogels is challenging, though fibrinogen 

concentration is known to have a positive correlation with structural modulus [186]. The 

manipulation of hydrogel properties when mimicking disease pathophysiology is 

extraordinarily important, particularly as stiffness was recently shown to be positively 

correlated with disease score in HGSOC [46]. 

Peptide-functionalised multiarm polyethylene glycol gels are commonly used artificial 

hydrogels, and are frequently formed via the factor XIII-catalysed cross-linking 

mechanism [180, 187]. Gel stiffness can be controlled through changing the polymer dry 

mass of the hydrogel. Biological functions can be added to these matrices through the 
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incorporation of peptides (Arg-Gly-Asp) and other components during the gel formation 

stage. Gel degradation can be regulated through the incorporation of specific degradation 

motifs throughout the matrix, allowing cells to remodel their microenvironment, an 

important process in angiogenesis. A study by Loessner et al used PEG gels to investigate 

HGSOC and the effect of cell-ECM interactions on sphere formation, using OV-MZ-6 

and SKOV-3 cells [187]. It was demonstrated that more compact and smaller cell 

spheroids grow in stiffer gels. In addition, integrin engagement significantly increased 

cell proliferation. Furthermore, the inhibition of cell-mediated matrix remodelling 

significantly inhibited proliferation. OV-MZ-6 cells cultured in 3D are more chemo-

resistant to paclitaxel than when cultured in 2D, cell viability being reduced by 40% and 

80%, respectively [187]. This chemo-resistance has been attributed to decreased 

penetrance of the anti-cancer drug and increased survival signalling. The differences 

observed between 2D and 3D cultures can be credited to forcing cells to grow in unnatural 

condition, which is known to alter cell behaviour [188, 189]. 

HGSOC is believed to originate from transformed FTSECs. Lawrenson et al developed 

a 3D model to mimic these early stages of HGSOC [190]. This model features FTSECs 

which have been isolated from fallopian tubes immediately following surgery, before 

seeding on poly-2-hydroxyethyl methacrylate (poly-HEMA)-coated tissue culture dishes, 

inducing spheroid formation. The FTSECS formed mono- or multi-layer epithelial sheets 

around a central hyaline matrix core. Gene expression analysis identified >1000 genes 

which were differentially expressed between spheroid FTSECS and those grown in 2D. 
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5.4. Microfluidics  

 

 

Figure 5. Schematic of the lung-on-a-chip. Representation of the lung-on-a-chip device 

developed by Huh et al [191]. Human alveolar epithelial cells and microvascular 

endothelial cells are seeded in separate channels. The epithelium channel is perfused with 

air, whereas the endothelium layer is perfused with blood. The vacuum applied to the 

hollow side channels induces physiological stretching of the adhered cells mimicking 

breathing 

 

Microfluidics and micropatterning offer an interesting new avenue to develop novel 

HGSOC models. Organ-on-a-chip devices were pioneered by Ingber et al, who developed 

the lung-on-a-chip device, which was shown to accurately mimic organ function [192]. 

This model can be seen in Figure 5 and constitutes two central channels that are separated 

by a porous polydimethylsiloxane (PDMS) membrane coated with ECM proteins. Human 

alveolar epithelial cells and microvascular endothelial cells are introduced to opposite 

surfaces of the PDMS porous membrane, forming cellular monolayers. Intrapleural 

pressure is replicated by two hollow lateral microchannels, which when a vacuum is 

applied, causes elastic deformation of the cell-containing microchannels and stretching 

of the PDMS membrane and adherent cell layers. When the vacuum is released the PDMS 

membrane and adherent cells relax, this process replicates breathing. In addition, air is 
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flown through the alveolar epithelial layer and blood through the microvascular 

endothelial layer. This system was successful in demonstrating the effectiveness of on-a-

chip models. Since the creation of the lung-on-a-chip, magnitudes of similar devices have 

been developed for different organs, including brain, liver, kidney, bone marrow and gut 

[193-197]. .  

 

5.4.1. Current microfluidic platforms 

Organ-on-a-chip is a colloquial term used to describe devices which are typically created 

using photo- and soft-lithography, which is further described in the Materials and 

Methods section (p. 59). This technology is easy to use and replicate, with the ability to 

innovate your own designs dependent on your objectives. 

One of the most commonly used designs, as shown in Figure 6, features a central gel 

channel and two lateral medium channels. The gel channel is separated from the media 

channels by vertical posts. During hydrogel injection into the central channel, the posts 

ensure laminar gel flow - preventing gel leakage into side compartments. Upon curing of 

the hydrogel, medium is added to the lateral side channels, which is then able to diffuse 

through the gaps between posts into the central channel and supply any embedded cells 

with nutrient etc. 

Jeon et al used a three-channel microfluidic chip to investigate organ-specific human 

breast cancer cell extravasation into bone- (BMi) and muscle- (MMi) mimicking 

microenvironments through a microvasculature [198]. Depending on the 

microenvironment being mimicked, the central channel was injected with one of two cell 

tri-cultures. When mimicking bone, human bone marrow derived mesenchymal stem cells 

(hBM-MSC), osteo-differentiated (OD) hBM-MSCs and primary GFP-tagged human 
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umbilical vein endothelial cells (HUVECs) were embedded in fibrin gel. Whereas, hBM-

MSC, GFP-tagged HUVECs and C2C12 (myoblast cell line) were embedded in fibrin gel 

to mimic muscle. This study demonstrated that extravasation rates of MDA-MB-231 

metastatic breast cancer cells in the BMi microenvironment were significantly higher 

compared to MMi microenvironment and control (no stromal cells). They concluded that 

C2C12 derived adenosine inhibited cancer extravasation in the MMi, which was inhibited 

with the introduction of an adenosine receptor antagonist.   

 

Figure 6. Schematic of three-channel device. Representation of device used by Jeon et 

al to investigate cancer cell extravasation [198]. The device incorporates a central gel 

channel (C) and two lateral medium channels (LM and RM). Schematic is not to scale.  

 

Another commonly used microfluidic device incorporates five parallel channels; a central 

gel channel, two stromal cell culture channels and two medium channels – as shown in 

Figure 7.  Kim et al investigated vasculogenesis and angiogenesis using this platform 

[199]. To investigate vasculogenesis, HUVECs were seeded in the central channel 

embedded within a fibrin gel, whereas normal lung fibroblasts (LFs) were seeded in the 
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flanking stromal cell channels (LS, RS). Remarkably, HUVECs were able to form 

perfusable network when co-cultured with the LFs without additional VEGF. This was 

due to exogenous factors being released by the LFs. To investigate angiogenesis, 

HUVECs were cultured on the left side-wall of the acellular fibrin matrix of the C 

channel, LFs were then seeded in the opposite RS channel – this exposed HUVECs to a 

pro-angiogenic gradient. It was observed that HUVECs sprouted in a directional response 

to LF pro-angiogenic secretions. The co-culture of HUVECs with highly malignant 

multiforme cells (U87MG) was also explored, in the angiogenesis paradigm. In this 

model HUVECs were again cultured in the central channel, but with U87MG cells 

replacing LFs in the stromal channel (RS). It was demonstrated that in comparison to LF 

induced sprouting, U87MG sports had an aberrant morphology, including the presence of 

immature branching and poorly lumenised vessels.  

 

Figure 7. Schematic of a five-channel PDMS device. Representation of device used by 

Kim et al to investigate vasculogenesis and angiogenesis [199]. The device incorporates 

central gel channel (C), separated from two stromal compartments (LS and RS), by lateral 

medium channels (LM and RM). Schematic is not to scale. 
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Shin et al proposed a novel microfluidic platform incorporating four separate hydrogel 

compartments separated by three channels (see Figure 8) [200]. This system was designed 

to allow the investigation of a number of different mechanisms within one system, as cells 

may be seeded in four different gel compartments, or three 2D channels. This allows a 

number of different mechanisms of cell-cell communication, be it autocrine, juxtacrine 

or paracrine. The authors propose this design could be used to investigate cancer-

dependent angiogenesis. In this system HUVECs would be seeded in the central channel 

and cancer cells in an opposing channel (with normal medium in the other). This would 

allow cancer-vasculature paracrine signalling and the analysis of angiogenesis, vessel 

structure and function, and the impact of angiocrine signalling on cancer cells. The 

authors have used this platform to study processes such as angiogenesis, cancer metastasis 

and hepatocyte morphogenesis [201, 202].  

 

Figure 8. Schematic of seven-compartment PDMS device. Representation of device 

proposed by Shin et al to investigate multiple paradigms [200]. The device incorporates 

four gel compartments (G) which are separated by three parallel channels (M). Schematic 

is not to scale. 
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5.4.2. Advantages and limitations of microfluidic devices 

It was announced in 2014 by the Tufts Center for the Study of Drug Development that 

the average cost of bringing a new drug to market is $2.6 billion - significantly more than 

the $802 million reported in 2003 [203]. A large part of this cost was due to difficulties 

and delays regarding safety, and efficacy (or both), with compounds in the early stage of 

development. Microfluidics and organ-on-a-chip devices can act as effective links 

between traditional in vitro and in vivo models, and potentially reduce this cost burden by 

acting as more representative models of pathophysiology.  

Organ-on-a-chip devices have a number of advantages when compared with traditional 

in vitro and in vivo models, further described in Table 2. Compared with 2D in vitro 

models, microfluidic systems cultures cells in a 3D microenvironment which offers 

phenotypic and genotypic advantages [184]. Indeed, culturing A549 lung 

adenocarcinoma in vascularised 3D microfluidic devices allowed the more accurate 

prediction of the efficacious concentrations of 12 compounds which inhibited EMT, 

compared with 2D culture [204]. In addition, Aref et al highlighted that the design of the 

device allows the researcher to determine how different cell populations communicate. 

As well as determining how cells communicate, microfluidics allows control of how the 

physical microenvironment communicates with the cell, this could be through the 

manipulation of the substrate to which cells are adhered, or through the induction of flow 

[192, 205]. Furthermore, microfluidics, as the name implies, requires little material and 

cells for culture - this is especially beneficial when dealing with particularly expensive 

reagents and/or cells.  

Compared with in vivo experiments, microfluidic models have less ethical constraints 

regarding animal experiments (though many reagents used are derived from animals). In 

addition, in vivo models are expensive, requiring more reagent and many repeats. 
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Whereas, microfluidic culture is much cheaper, using less reagents and requiring a 

standard cell culture laboratory. Microfluidic systems also allow live-imaging, requiring 

simple protocols and relatively standard equipment. Whereas, in vivo live-imaging can 

involve invasive, technical procedures, such as cranial windows within rodents [206]. 

This is perhaps best demonstrated by the lung-on-a-chip system, which clearly 

demonstrated with the use of real-time, high resolution microscopy that mechanical stress 

from breathing motions promotes interleukin-2 (IL-2) induced pulmonary oedema during 

cancer therapy [192].  

Though microfluidics offers some key advantages over more traditional models, it also, 

like all techniques, has limitations. Organ-on-a-chip systems allows researchers to further 

the understanding of organ function and molecular interactions. But some physiology is 

impossible to mimic using these systems, for example behavioural experiments which are 

extensively used in anti-depressant/-anxiety studies. However, organ-on-a-chip models 

can be used to further understand brain function, on a cell and molecular level [193, 207, 

208]. PDMS is extensively used in organ-on-a-chip studies due to its inherent properties 

of flexibility, optical clarity, biocompatibility, cost, and easy bonding with glass. 

However, PDMS is also known to absorb low concentrations of small hydrophobic 

compounds - suggested to reduce pharmacological concentrations [209]. This can make 

PDMS devices unsuitable to test many small molecule compounds, though by evaluating 

drug absorbance, it is possible to adjust drug concentrations suitably. Organ-on-a-chip 

studies have attracted great interest due to their ability to recapitulate the human 

physiology. However, the techniques and understanding required to create these devices 

are alien to many researchers, particularly those from biology backgrounds. Thus, 

researchers need to be more transparent when describing the techniques used to enable 

uptake and further research. Perhaps the panacea of this is 3D printing of devices, which 
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would allow the rapid uptake of organ-on-a-chip techniques across institutes and groups 

- though this is an area with its own difficulties. In addition, certain microfluidic device 

designs make extensive molecular biological experiments difficult (e.g. Western blot and 

PCR). This is due to the covalent bonding between the PDMS and underlying glass 

substrate, making it extraordinarily difficult to extract the hydrogel/cells from the device 

to conduct further analysis. However, Lee et al revealed that by replacing the glass 

substrate with a PSA film, this allows non-covalent bonding of PDMS to the underlying 

substrate and easy detachment [207]. This allowed Lee to detach the PDMS and remove 

the cells embedded with the hydrogel and conduct Western blot analysis. This highlights 

that with innovation, microfluidic device design allows you to overcome different issues. 

Microfluidics offers a reliable bridge between traditional in vitro and in vivo models. 

Perhaps not best suited to broad, high-throughput screening like traditional 2D culture, 

but following the identification of lead compounds, could allow the accurate analysis of 

toxicology and efficacy, before progressing to further in vivo studies. This could enable 

the identification of efficacious and safety issues described previously, and reduce the 

cost and time for novel drug development. 

Table 2. Advantages and limitations of microfluidic models 

Compared with in vitro Compared with in vivo 

Advantages Limitations Advantages Limitations 

Control cell 

interactions 

Limited molecular 

biology analysis 

Less time-

consuming 

Behavioural 

experiments 

More complex Less throughput Less ethical issues More complex 

Fluid flow Cheaper Human cells  

Use less cells and 

material 

Requires expertise 

and equipment  

Live-imaging  

Mechanical cues  Not standardised   
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6. Aims and objectives 

 

Microfluidics offers a robust and affordable approach towards developing novel models 

for human disease. These platforms are simple in design, yet mimic the human 

physiology, while enabling us to carefully manipulate the microenvironment to 

investigate disease progression. Cancer-on-a-chip models for various diseases currently 

exist, with breast, liver and bone marrow cancer all being successfully mimicked [197, 

198, 210, 211]. However, to the best of our knowledge, no such model currently exists 

for HGSOC. The proposed model aims to integrate HGSOC cells with a perfusable 

endothelium, which will allow the perfusion of drugs and perhaps cells throughout this 

system. 

Research will initially focus upon the development of a reproducible vascularised 

network, based upon similar reported systems. However, the literature is inconclusive 

regarding the exact parameters to use, with little explanation regarding final published 

concentrations. This thesis therefore aims to explain the relationship between the final 

developed vasculature-on-a-chip, and the reagents used to create it. 

Following the development of this vascular system, interactions between the vasculature 

and stromal cells will be investigated. As mentioned, many system use stromal support 

cells to promote the formation of the vasculature, such as lung fibroblasts and pericytes 

[156, 199]. This thesis aims to investigate the impact of these cells, particularly pericytes, 

on the developed vasculature, to see if they support vessel stability, improve barrier 

function and inhibit vessel hyperplasia. 

Using the developed vascular system, interactions between endothelial cells and HGSOC 

will be investigated. These studies will aim to investigate the impact of HGSOC on the 
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vasculature, and vice versa. In addition, the impact of chemotherapeutics, namely 

carboplatin, on the developed system will be investigated.  
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7. Materials and Methods  

 

7.1. Cell culture 

7.1.1. HUVEC and G33 culture 

HUVECs were obtained from Lonza and cultured in Endothelial Growth Medium-2TM 

(EGM-2, Lonza) or EGM-2TM BulletKitTM (Lonza), with passages 2-6 used in 

experiments. G33 cells were isolated from patient biopsies and cultured in Dulbecco’s 

Modified Eagle Medium F-12 GlutaMaxTM (DMEM F12, Thermo Fisher Scientific) 

supplemented with 10% foetal bovine serum (FBS) and 1% penicillin/streptomycin, with 

passages <30 used for experiments. G33 cancer cells were kindly gifted from the Balkwill 

lab. Pericytes were obtained from Promocell and cultured in Pericyte Growth MediumTM 

(PGM, Promocell), with passages 2-6 used in experiments. Normal Human Lung 

Fibroblasts (NHLFs) were obtained from Lonza and cultured in the Fibroblast Growth 

Medium-2 BulletkitTM (Lonza), with passages 2-10 used in experiments. Cells were 

cultured in T75 flasks until achieving 80-90% confluency and then either passaged or 

used in experiments. Cells were maintained in a humidified incubator at 37 °C and 5% 

CO2. Except pericytes, when passaging cultures, cells were initially washed with 

Dulbecco’s Phosphate Buffered Saline (DPBS, Sigma-Aldrich) before detachment using 

a 9:1 ratio of Versene (Thermo Fisher Scientific) and Trypsin (Life Technologies Ltd) 

respectively, before centrifugation (5 min, 1,200 revolutions per min (RPM)) and 

resuspension in their respective medium. Pericytes were detached using the Detach-30 

kitTM, as according to manufacturer’s protocol, before centrifuging (3 min), 1,200 RPM) 

and resuspension in PGM. Cells were then quantified using a haemocytometer before 

resuspension in a new flask.  
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7.1.2. Cryopreservation and resuscitation of samples 

Samples were prepared in a 70% medium, 20% FBS and 10% dimethyl sulphoxide v/v 

solution (DMSO, Sigma-Aldrich), with 1 × 106 cells/mL. 5 × 105 cells were added per 

cryovial (Nalgene), before temporary storage overnight in a Mr. Frosty at -80 °C, 

following by long-term storage in a liquid nitrogen cryobank. 

Samples were removed from the cryobank and thawed in a 37 °C water bath before 

diluting samples in 20 mL of medium and centrifugation. Following centrifugation, 

samples were re-suspended in 10 mL of their respective medium and seeded in a T75 

flask, with medium replaced after 24 h.  

 

7.1.3. Vasculogenesis cell seeding 

This protocol was developed throughout this thesis and is the final reported iteration. 

Reported concentrations and conditions may therefore differ to what is discussed 

throughout this thesis. In addition, given concentrations are final, but when creating fibrin 

gels fibrinogen and thrombin solutions are mixed 1:1, thus initial concentrations of 

starting solutions will be higher. Fibrinogen solutions were prepared by mixing bovine 

fibrinogen (Sigma-Aldrich) in DPBS, and dissolving in a 37 °C water bath for 2 h, with 

the final concentration being 10 mg/mL. Concomitantly, a thrombin solution was 

prepared by mixing thrombin and DPBS, achieving a final concentration of 2 U/mL. 

Following HUVEC detachment, cells are counted, re-centrifuged and re-suspended 

achieving a final concentration of 6 × 106 HUVECs/mL in the thrombin solution. During 

pericyte single-channel co-culture pericytes are also added to the same thrombin solution, 

achieving a final density of 6 × 105 pericytes/mL. 10 µL of cell suspension is mixed with 

an equal amount of the fibrinogen solution before injecting into the gel channel. Devices 

are then incubated for 5 min in a humidified incubator at 37 °C and 5% CO2. The inlet 
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reservoirs are loaded with EGM-2, and using suction, the hydrophobic side-channels are 

filled, with a total of 400 µL medium per chip. When seeding PDMS wells, a total of 40 

µL gel was injected before adding 100 µL EGM-2. To promote vessel formation, EGM-

2 is further supplemented with 50 ng/mL VEGF (Peprotech), with medium replaced every 

24 h. 

 

7.1.4. Cancer cell seeding 

Fibrin gels were created similarly as reported in 7.1.3. G33s were re-suspended in the 

thrombin solution achieving a final cell density of 6 × 105 G33s/mL. The cell suspension 

was mixed 1:1 with fibrinogen solution before injecting into the PDMS wells and adding 

80 μL EGM-2. PDMS wells were incubated at 37 °C and 5% CO2. Culture medium was 

replaced every 24 h. 

 

7.1.5. Cancer spheroid seeding 

G33 cancer spheroids were cultured in CorningTM 96-well clear ultra-low attachment well 

plates (Fisher Scientific). G33 and HUVEC cells were detached, re-suspended and 

counted (as previously described), before seeding 2 × 104 and 5 × 103 cell respectively 

per well, with a total of 300 µL suspension per well. Spheroids were cultured for 72 h 

before use.  

 

7.1.6. LIVE/DEAD assay 

The LIVE/DEADTM viability/cytotoxicity kit (Thermo Fisher Scientific) was used 

according to manufacturer’s protocol. Briefly, samples were washed twice with DPBS 

followed by 1 h incubation, at 37 °C, with 5 µM ethidium homodimer and 4 µM calcein 
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AM dissolved in DMEM F12. Samples were then washed thrice with PBS before 

imaging.  

 

7.1.7. Immunostaining 

Devices were washed three times with phosphate buffered saline (PBS, Sigma-Aldrich) 

before fixation in 4% para-formaldehyde (PFA) for 20 min at room temperature (RT). 

Samples were then washed thrice with PBS and incubated with 0.4% Triton X-100 

solution for 10 min at RT, before washing twice with PBS. Next, samples were blocked 

>4 h in 3% bovine serum albumin (BSA, Sigma-Aldrich) blocking buffer solution at RT, 

before overnight incubation (4 °C) with primary antibodies. Mouse monoclonal alpha-

human smooth muscle actin (α-SMA) Alexa Fluor 488-conjugated antibody (R&D 

Systems) 1/100, mouse monoclonal human CD31 Alexa Fluor 488-, 594- and 647-

conjugated antibodies (BioLegend) 1/100, mouse monoclonal zona occludens-1 Alexa 

Fluor 594-conjugated antibody (Thermo Fisher Scientific) 1/200, mouse monoclonal 

beta-catenin Alexa Fluor 647-conjugated antibody (Thermo Fisher Scientific) 1/100, 

mouse monoclonal VE-cadherin Alexa Fluor 488-conjugated antibody (Fisher Scientific) 

1/100, and rabbit monoclonal Ki67 Alexa Fluor 488-conjugated antibody (Abcam) 1/200 

were used for staining. Following antibody staining, cell nuclei are stained using 4′,6-

diamidino-2-phenylindole (DAPI, Sigma-Aldrich) 1/1000 and F-actin filaments were 

stained using Phalloidin-Tetramethylrhodamine B isothiocyanate (Merck) and Phalloidin 

Alexa Fluor 555 (Thermo Fisher Scientific) at 1/500 and 1/40, respectively, for 1 h at RT. 

Following staining, samples were washed with PBS and stored at 4 °C before imaging.  
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7.1.8. Cell counting kit-8 assay 

Cell counting kit-8 assay (CCK-8, tebu-bio) was used to evaluate carboplatin treatment 

of G33 and G164 cancer cells. IC50 values were obtained for cells cultured on 2D tissue 

culture plastic, re-suspended within a 3D fibrin gel or as a spheroid embedded within 

fibrin gel, with 2 × 104 cells always being tested. Cells were cultured for 24 h before 

adding carboplatin EGM-2 solutions (0-5000 µM). Following carboplatin addition, cell 

metabolism was evaluated after 24, 48 and 72 h using the CCK-8 assay kit. Briefly, 30 

µL of reagent was added per 500 µL medium and incubated for 4 h with the sample. 

Following incubation, colour change was evaluated using the SPECTROstar Nano plate 

reader (BMG Labtech), measuring absorbance at 450 nm.  

 

7.2. Microfabrication and material characterisation 

7.2.1. PDMS well fabrication 

A PDMS polymer was cast in a petri dish, at a 10:1 ratio between the PDMS base and 

curing agent, before being cured for 24 h in a dry oven at 60 °C. Following thermal curing, 

PDMS was cut into shape and gel reservoirs punched using 4 mm or 6 mm biopsy 

punches. PDMS devices and glass coverslips were cleaned with deionised water, ethanol, 

acetone and nitrogen gas, followed by attachment via treatment with oxygen plasma for 

60 seconds to form covalent bonding between them. Hydrophobicity was restored to the 

PDMS after plasma treatment by dry oven baking at 80 °C for 2 hours and sterilized by 

UV irradiation before each experiment.  4 mm and 6 mm wells were used in G33 and 

HUVEC experiments respectively.  
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7.2.2. Microfluidic chip fabrication  

Microfluidic devices were fabricated using a process of photo- and soft lithography. A 

master with positive relief patterns of SU-8 2050 photoresist (A-Gas Electronic 

Materials) on a silicon wafer (PI-KEM) was prepared by photolithography. A PDMS 

(Ellsworth Adhesives) polymer was cast against this master and thermally cured to obtain 

a negative replica piece. After separation from the master, hydrogel ports and medium 

reservoirs were punched from the PDMS using a sharpened needle and a 4 mm biopsy 

punch. The PDMS device and glass coverslip are cleaned using tape and nitrogen gas 

followed by attachment via treatment with oxygen plasma for 60 seconds to form covalent 

bonding between them. Devices were then sterilized via autoclaving at 126 °C for 30 min. 

To dry, and restore devices hydrophobicity post-plasma treatment, devices were dry oven 

baked at >60 °C for 3 days. 

 

7.2.3. Contact angle 

Contact angle was used to investigate PDMS hydrophobic recovery post-plasma 

treatment. Four conditions were investigated; pristine PDMS, plasma treated PDMS with 

no recovery, plasma treated PDMS with 3 days RT recovery and plasma treated PDMS 

with 3 days 60 °C recovery. Upon completion of plasma treatment for the plasma treated 

PDMS with no recovery, samples were exposed to a 5 µL deionised water droplet. The 

contact angle between the PDMS and water droplet was extrapolated using the ‘Default 

Method’ of the DSA 100 (Kruss Scientific) software. Three replicates per repeat were 

quantified. 
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7.3. Analysis 

7.3.1. Quantification of vascular formation and morphology 

Vessels were fluorescently labelled with either phalloidin or CD31 conjugated primary 

antibodies. Following staining, vessels were imaged using the Leica TCS SP2 confocal 

and multiphoton microscope (Leica). Due to the 75 µm height of devices, Z-projections 

of the microvasculature were obtained and combined using Trans function. Following 

imaging, vessel formation was quantified using CellProfilerTM [212]. Firstly, vessel 

visualisation was optimised using various functions, including ‘close’ and ‘clean’, 

followed by skeletonization, which gave a 1-pixel diameter skeleton overlay. This 

allowed the quantification of the overall skeleton length, termed ‘Area Occupied by 

Tubes’ by the software or ‘Total Tube Length’ in this thesis. Branching could also be 

investigated to describe vessel formation, however this was highly positively correlated 

with total tube length, thus the latter was more commonly used to determine 

vasculogenesis. In addition, vessel Feret’s diameter may be determined using 

CellProfiler. Firstly, the total vessel length is quantified, followed by determining the total 

pixelated area. Dividing the total pixelated area by the total tube length gives the absolute 

vessel diameter. Knowing the calibration number of the image allows you to convert this 

into actual length or area (µm, mm, cm). 

 

7.3.2. Investigating vascular permeability  

To investigate the impact of pericytes on vascular permeability and endothelial barrier 

function, an assay was established based on previous reports in literature [207, 213]. In 

this assay the vascular system was initially cultured according to previously described 

protocol, the medium reservoirs were then aspirated and 30 µL EGM-2 containing 25 

µg/mL 70 kDa FITC-dextran dye (Thermo Fisher Scientific) added to a single reservoir. 
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This FITC-dextran dye perfused throughout the vascular network and allowed the 

visualisation of barrier function by recording dye diffusion across the endothelium into 

the extravascular compartment over a 30-minute period, using a Lumascope LS720 

(Etaluma) live-imaging platform. Using ImageJ, vascular permeability was quantified 

using a parameter termed ‘net-fold intensity change’. Briefly, the intravascular and 

extravascular dye intensity were recorded at three regions of interest (ROI) per device 

(image). Following this, the change in net-fold intensity between intravascular and 

extravascular zone was investigated at T=0 and T=30 min - with a greater fold change 

indicative of more permeable vessels.  T=0 was determined as when the dye intensity was 

deemed stable within the vessel, therefore some devices were analysed for shorter time 

periods (shortest time period being 28 min). 

 

7.3.3. Quantification of G33 morphology and number 

ImageJ was used in image processing and quantification. Cell density was quantified via 

manual counting of DAPI stained cell nuclei per ROI, with two ROI per repeat. Cluster 

morphology was carried out by converting the image into a binary mask, before cleaning 

the image using ‘Remove Outlier’ function, the ‘Watershed’ function was then used to 

separate clusters. If Watershed did not separate clearly defined clusters this was done 

manually. Following separation of clusters, each cluster size (area) and circularity was 

recorded. 

 

7.3.4. Statistical analysis  

Multiple statistical analysis tests were carried out dependent on the experimental 

condition, with all tests being performed with Prism (GraphPad). This includes; unpaired 
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one-tailed student t-tests, one-way analysis of variance (ANOVA), and two-way 

ANOVAs. Results are shown as mean ± standard error of the mean (SEM). Statistical 

significance was assumed for p < 0.05.  * represents p < 0.05, ** represents p < 0.01, *** 

represents p < 0.001. 
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8. Developing a vasculature-on-a-chip 

 

8.1. Introduction to vascularised fibrinogen gels 

Vascularised fibrinogen gels have been used in organ-on-a-chip studies to investigate and 

mimic a range of physiologies and diseases, including the vasculature itself, and 

colorectal and breast cancers [156, 159, 207, 214, 215]. Using these systems, groups have 

been able to develop mature lumenised vessel network which express various junction 

markers and basement membrane proteins indicative of a mature vasculature, including 

VE-cad, β-cat, ZO-1, laminin and collagen IV [198, 199, 216]. These systems have been 

shown to have functional properties, as evidenced by the vessels having functional barrier 

properties [199]. In addition, researchers have been able to study the integration of 

spheroids within a vessel network, observe cancer cell extravasation through a similar 

system and observe the change in barrier function with the addition of pericytes [156, 

198, 216]. However, little has been published regarding the standardisation of this 

technique, with different concentrations of fibrinogen, thrombin solutions, HUVEC 

densities, stromal cells, exogenous factors and compounds being reported without clear 

justification [159, 198, 199, 213-215]. Such variation in technical details can lead to 

variability of results and poor reproducibility, potentially limiting the adoption of these 

platforms by a wider community. 

 

8.2. Development of vascularised fibrinogen gels in PDMS wells 

To understand how the different components of vascularised fibrin gels influence the final 

vessel network, they were investigated to ensure conditions guaranteeing proper 

vasculogenesis were optimised. This would allow us to later investigate the interactions 
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between the vasculature and HGSOC. These conditions were initially investigated using 

a PDMS well system, with conditions commonly described in the literature shown in 

Table 3. PDMS wells were used, as we believed they were better adapted for more ‘high-

throughput’ experimentation of conditions enabling vascularisation than the subsequently 

used microfluidic devices. 

 

Table 3. Standard fibrinogen gel components (final concentrations) 

Components Concentration/time 

HUVECs (Million/mL) 6 

Fibrinogen (mg/mL) 2.5  

Thrombin (U/mL) 2  

Type 1 Collagen (mg/mL) 0.2 

Aprotinin (U/mL) 0.15  

VEGF (ng/mL) 50 

Duration (Days) 4 

 

The process of PDMS well fabrication is further described in the Materials and Methods 

section of this thesis (p. 58). 100 µL fibrinogen gel was added to 6 mm diameter PDMS 

wells. Following gelation, 200 µL EGM-2 supplemented with 50 ng/mL VEGF was 

added. To determine if this system was suitable for further use, an initial experiment 

investigating the impact of fibronectin on vessel formation following 4/5-days culture 

was conducted. Fibronectin was selected to be investigated due to its important role in 

blood vessel morphogenesis and prevalence in HGSOC [46, 217]. As shown in Figure 9, 

no significant differences were observed between any of the groups investigated, with 
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neither time or fibronectin impacting the vascular networks formed, as quantified through 

the total tube length (pixels).  

 

Figure 9. Impact of fibronectin on vessel formation. Using a PDMS well system, the 

impact of fibronectin on vasculogenesis was studied A) Fibronectin and time did not have 

a significant impact on total tube length. B) Representative images. Time points: Day 4 

and 5. Supplemented with 50 ng/mL VEGF. Red, phalloidin. Scale bar: 75 µm. FN = 

fibronectin. Statistics correspond to N=3. 

 

Though no significant differences were observed, the large errors associated with the 

measurements indicated that this assay may not be suitable to quantify precisely the 
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contribution of multiple factors on vascular network formation. The injection of 100 L 

of gel into an open well results in the formation of several layers of vasculature, this 

makes imaging and quantification of the vascular layers challenging. To address this, we 

imaged small ROI using a 40X objective, as we believed this would allow us to avoid 

imaging such a broad depth of gel, however, as shown in Figure 9, this technique was 

unsuccessful. We therefore decided that PDMS wells were not suitable to investigate the 

impact of multiple parameters on vascular network formation. Instead microfluidic chips 

were seen as a more viable solution. This is due to chips having a defined, enclosed, 

narrow chamber, allowing a 3D HUVEC network to form within a relatively thin layer of 

gel and allowing the rapid imaging of large area whilst reducing user bias.  

 

Figure 10. HUVEC vascularisation in PDMS wells and PDMS chips. PDMS chips 

have a defined area, allowing the imaging of vascularised 3D monolayers. Whereas, 

PDMS wells feature vascular overlay making imaging more challenging. Red, phalloidin. 

Scale bars: PDMS wells 75 µm, PDMS chips 300 µm. Time point: Day 4. Supplemented 

with 50 ng/mL VEGF.  
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8.3. Design of three-channel microfluidic device 

The PDMS chip used to optimise vasculogenesis in this thesis is based upon a design 

commonly reported in the literature [198, 213]. This design features a central gel channel 

which is flanked by two lateral medium channels, with posts separating the individual 

channels - see Figure 11. This design enables the injection of a cell-laden fibrinogen gel 

into the central channel, and following gelation, the addition of medium into the lateral 

channels that is able to diffuse through the gaps between the posts into the central gel 

channel - promoting vessel formation. 

  

Figure 11. Schematic of three-channel device. Schematic representation of the three-

channel device. This system has two lateral medium channels (LM and RM) and a central 

gel channel (C). Each channel is 75 µm in height and 1000 µm in width. Posts are 300 

µm in length with 75 µm gaps between each post. Schematics are not to scale. Same 

schematic as Figure 6. 
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8.4. Development of a vascularised microfluidic system  

Organ-on-a-chip devices were developed based on microfabrication techniques used in 

the microelectronics industry, hence their name of “chips”. It is through this combination 

of photo- and soft-lithography, that cell based microfluidics has been able to expand. 

PDMS, used in the process of soft-lithography, is viewed by many as an almost ideal 

material for rapid prototyping of microfluidic devices, due to properties such as low-cost, 

optical clarity, reproducibility, bio-compatibility, gas permeability and ease of use [209]. 

The process of soft-lithography is described in greater detail in the Materials and Methods 

section (p. 59). Briefly, PDMS is poured onto a negative photomask, degassed, cured, and 

attached to a glass coverslip following plasma oxidation treatment. Cured PDMS is 

hydrophobic, however plasma oxidation leads to a significant reduction in 

hydrophobicity, due to the formation of silanol groups on the material surface and change 

in the surface nano-structure [218, 219].  This change is temporary, with research 

demonstrating hydrophobic recovery with storage time. This recovery has been attributed 

to low molecular weight chains diffusing to the thermodynamically unstable hydrophilic 

surface and the reorientation (and possible diffusion) of silanol groups into the bulk 

polymer [219, 220]. 

The impact of plasma oxidation on PDMS hydrophobicity was investigated by contact 

angle (Figure 12). Untreated cured PDMS has a contact angle of 107.9 ± 1.1 °, however 

this decreases to 29.0 ± 0.3 ° following plasma treatment. PDMS hydrophobicity can be 

recovered with storage time, this process is enhanced when the substrate is heated. This 

is observed in Figure 12, as following plasma treatment, storing the PDMS at RT for 72 

h significantly increases the contact angle to 81.7 ± 2.2 °, however, this is further 

increased to 88.8 ± 1.9 ° when the sample is stored at 60 °C. These values are comparable 

with what is observed in the literature, with Bodas et al showing ‘pristine PDMS’ having 
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a contact angle of 120 °, whereas oxygen plasma treated PDMS after 72 h storage 

recovery having a contact angle of ~75 ° [218]. A similar phenomenon was described by 

Kaneda et al who demonstrated PDMS hydrophobicity can be recovered following 

oxygen plasma treatment [221].  

Many organ-on-a-chip studies include the recovery of PDMS hydrophobicity in the 

methods, with PDMS hydrophobicity desirable due to its reduced wettability - limiting 

leakage into side-compartments following gel injection [199, 214]. The importance of 

PDMS hydrophobic recovery on ‘successful injections’ was further investigated and 

shown in Figure 12, with successful injections defined when a device was injected with 

a fibrinogen gel and did not leak into either side compartments. As shown in Figure 12, 

chips that underwent 60 °C thermal recovery compared with chips that underwent RT 

recovery showed a significant increase in observed successful injections (100 vs 50 (range 

60-42) % respectively, across all post lengths). The improved recovery of hydrophobicity 

observed by water contact goniometry resulted in significantly improved success rates of 

injection of hydrogels. Interestingly, the range of post length tested did not have an impact 

on injection success rate. Following this, future devices underwent 72 h hydrophobic 

recovery at 60o prior to gel injection.  

Although frequently cited, the impact of hydrophobic recovery of PDMS on gel injection 

is rarely reported in the literature. An extensive paper published by Shin et al [200] details 

the protocol for developing similar microfluidic systems and describes the importance of 

restoring hydrophobicity to prevent the ‘unintended breakage of optimal surface tension 

when gel filling’. The method proposed in this thesis differs to the Shin protocol - they 

propose heating devices at 80 °C for 24 h (they do state this step can be increased up to, 

but not exceeding 72 h), whereas the protocol developed in this thesis heats the devices 

at 60 °C for 72 h. We have investigated the impact of 24 h 60 °C recovery (plus an 
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additional 48 h RT recovery) on PDMS hydrophobicity, however no significant 

difference was observed between that and PDMS which had not undergone thermal 

recovery (72 h RT recovery, data not shown), and was therefore not further investigated. 

Thus, a shorter thermal recovery time would be expected to cause a decrease in the rate 

of successful injections - this is potentially negated by Shin et al due to the higher 

temperature they use. 

 

Figure 12. Impact of PDMS hydrophobicity on gel injection. A) Using water contact 

angle goniometry it was revealed that plasma oxidation significantly reduced PDMS 

hydrophobicity. This was restored following storage time (3 days), but could be 

significantly enhanced with heating (storage in 60 °C oven). Acronyms: NT - No 

Treatment, NR - No Recovery, NTR - No Thermal Recovery, HR - Heated Recovery (60 

°C). Statistics correspond to N=3. B) Restoring hydrophobicity through thermal recovery 

led to a significant increase in successful injections across all posts lengths tested, when 

compared with NTR samples. Statistics correspond with 36 tested samples. C) 

Representative images of water droplets at PDMS interfaces tested in A. D) 

Representative images of gel injection, with and without gel leakage. The corresponding 

interfaces are indicated by white arrows. Scale bar: 300 µm.  
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8.5. Determination of the optimum VEGF concentration to promote vessel 

formation 

VEGF is a well-established angiogenic factor, encountered as a range of splice variants, 

which are further discussed in the introduction of this thesis (p. 28). VEGF121 is 

extensively used in vascular and organ-on-chip studies, perhaps due to its lower 

concentration biological range when compared with other VEGF isoforms.  

The concentration of VEGF used in organ-on-chip studies is quite consistent, with most 

groups reportedly using 50 ng/mL VEGF121, though certain groups report using lower 

concentrations (20 ng/mL) [199, 213, 216, 222]. To determine the optimal concentration 

for inducing vessel formation in microfluidic devices five concentrations of VEGF121 

were investigated (0, 25, 50, 100, 150 ng/mL), using total tube length to describe network 

formation. The EGM-2 used in this experiment was purchased from Lonza, which 

contains as additional indiscriminate concentration of VEGF. However, all experiments 

reported hereafter in this thesis used EGM-2 purchased from Promocell. This is due to 

delivery issues concerning the former, and Promocell EGM-2 containing a known 

concentration of basal VEGF165 (0.5 ng/mL). 

All concentrations (except 100 ng/mL) of VEGF significantly promoted vessel formation 

when compared with basal EGM-2 (Figure 13). The mean total tube length ± SEM were 

5.1 ± 0.9, 8.3 ± 0.1, 8.7 ± 0.6, 8.3 ± 0.8 and 9.0 ± 0.6 mm for 0, 25, 50, 100 and 150 

ng/mL, respectively. All results represent the mean of 3 repeats, except 100 ng/mL, which 

is 2 repeats, hence no significant difference is observed. In addition, VEGF concentration 

had no impact on vessel diameter (mean diameters between 36.7 - 51.4 µm).  
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Figure 13. Optimum VEGF concentration to promote vessel formation. A) Impact of 

VEGF concentration on tube length. All concentrations of VEGF tested promoted a 

significant increase in total tube length compared with basal EGM-2, except 100 ng/mL. 

However, no significant difference is observed between VEGF containing groups. B) 

Representative images. Time point: Day 4. Red, phalloidin. Scale bar: 300 µm. Statistics 

correspond to N=3, apart from 100 ng/mL (N=2). 

 

Our results are largely in agreement with what is reported in the literature, as 50 ng/mL 

VEGF significantly promoted vessel formation when added to basal EGM-2 [198, 213]. 

However, according to our results, medium is often supplemented with VEGF at higher 

concentrations than the level at which a plateau in tube formation has been achieved (25 

ng/mL). Above this concentration, no significant difference in total tube formation is 
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observed. VEGF is also regarded to regulate blood vessel diameter, with a positive 

correlation reported between concentration and diameter [223]. However, we do not 

observe a similar relationship between VEGF and vessel diameter. Increasing VEGF 

concentrations may have had an effect that was not quantified in this experiment. 

Considering VEGF was first identified as vascular permeability factor, and is known to 

promote vessel permeability, via nitrogen oxide and prostacyclin interactions, increased 

VEGF may enhance vessel permeability, though this was not further investigated in this 

thesis [224]. Due to vascular networks being morphologically similar within the range of 

25-150 ng/mL VEGF, the standard concentration of 50 ng/mL used in the literature was 

satisfactory for the continuation of this study. 

 

8.6. Impact of HUVEC density on vessel formation 

Endothelial cells form the endothelium, which is the inner-monolayer of all blood and 

lymphatic vessels. In this thesis, HUVECs are the endothelial cells used to replicate the 

vasculature. Though other types of endothelial cells are available, HUVECs are the 

predominantly used endothelial cell type in organ-on-a-chip devices that incorporate a 

vascular component. Human dermal microvascular endothelial cells (HDMECs) are also 

commonly used - though HUVECs are still seen as the gold standard. This is due to 

HUVECs ease of isolation (and commercial availability), ubiquity and reliability in many 

studies [225, 226]. However, there is a growing understanding of the heterogeneity within 

endothelial subtypes and how this impacts physiology and function [227, 228]. This is 

highlighted by the endothelium in different organs having vastly different phenotypes, 

with continuous, tightly-regulated endothelium located in the brain, fenestrated 

endothelium in the kidneys, and discontinuous endothelium in the liver [228]. This 

heterogeneity highlights the flaw in that much of our understanding of vascular biology 
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is structured around the use of HUVECs. To address this, much research has been 

conducted on developing alternative endothelial sources, including isolated induced 

pluripotent stem cells, the aforementioned HDMECs and an array of other venous and 

arterial endothelial cells which are commonly available [229]. Interestingly, and 

unsurprisingly, the microenvironment has been shown to play an integral role in 

endothelial cell heterogeneity, as when cultured in vitro endothelial cells have been shown 

to ‘lose’ their tissue-specific genotype within 48 h of culture [230]. Due to their extensive 

current use in microfluidic systems, HUVECs were further used in this study, allowing 

comparisons with other research.  

The density of HUVECs used to achieve a perfusable network varies greatly in literature, 

with some studies reporting concentrations as low as 2 × 106 HUVECs/mL and others as 

high as  20 × 106 HUVEC/mL [199, 214, 231]. Perhaps the most detailed study regarding 

the impact of HUVEC density on vessel formation was conducted by Whisler et al, who 

investigated the impact endothelial cell number on the number of branches formed, 

branch length, vessel diameter and % area coverage of a vessel network [222]. They 

reported that increasing HUVEC density had little impact on the number of branches and 

branch length of the networks formed, but led to an increase in % area coverage and vessel 

diameter. In this thesis, total tube length was used to describe overall vessel formation as 

it highly correlated with number of branches, thus preventing repeating results. 

Four cell densities (2, 4, 6 and 8 × 106 HUVECs/mL) were cultured over a 4-day period, 

after which samples were fixed, stained and imaged. As shown in Figure 14, increasing 

HUVEC densities led to a significant increase in total tube length (mm), 5.4 ± 0.8, 8.4 ± 

0.7, 12.7 ± 0.9 and 13.2 ± 0.4 mm for 2, 4, 6 and 8 × 106 HUVECs/mL, respectively. In 

addition, a significant increase in % area coverage is observed with increased HUVEC 

density, 15.1 ± 1.5, 24.8 ± 3.2, 47.9 ± 2.4 and 56.1 ± 6.9 for 2, 4, 6 and 8 ×106 
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HUVECs/mL, respectively. These results are in agreement with previous reports by 

Whisler [222]. In contrast, there was no significant impact on vessel diameter, results 

ranging from 39.8 to 58.5 µm. No significant differences were observed between 6 and 8 

× 106 HUVECs/mL in any quantified parameters, suggesting that 6 × 106 HUVECs/mL 

would be most suitable to achieve optimum tube formation, whilst reducing the number 

of cells required for each experiment (a limiting factor for routine vascular network 

experiments).  

We report similar results to what is published by Whisler et al concerning the impact of 

cell density on network formation and % area coverage, however, they also observe an 

increase in vessel diameter that we do not. This difference may be a result of the duration 

of the experiment and the formation of a mature vasculature. They report the formation 

of a lumenised vasculature after day 4, whereas we report complete lumination at day 10 

(reported later in Figure 18). This suggests the Whisler microvasculature reaches maturity 

sooner than what we report. This could be due to a different source of HUVECs or general 

differences with handling cultures. If we extended the duration of these experiments to 

allow the formation of a more mature microvasculature, perhaps a difference in vessel 

diameter would be observed, however, this was not further examined.  
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Figure 14. Impact of cell density on vessel formation. Varying HUVEC densities (2, 

4, 6, 8 × 106 HUVECs/mL) were injected into microfluidic device and the impact of 

density on vessel formation was investigated. A) Changes in total tube length (mm), with 

increasing HUVEC density. B) Changes in % area coverage with increasing HUVEC 

density. C) Changes in vessel diameter with increasing HUVEC density. D) 

Representative images. Time point: Day 4. Supplemented with 50 ng/mL VEGF. Red, 

phalloidin. Scale bar: 300 µm. Statistics correspond to N=3. 

 

8.7. Impact of aprotinin on vessel formation 

Aprotinin is a small protein bovine pancreatic trypsin inhibitor which was previously 

administered during complex surgery to limit bleeding, due to its mechanism as an anti-
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fibrinolytic. Bayer later withdrew Aprotinin due to increased risk of death following 

administration compared with alternative treatment [232]. However, aprotinin is still a 

useful tool to investigate and limit in vitro fibrinolysis, which is the process of fibrin 

breakdown. This is a complex and tightly controlled process with abnormalities leading 

to a range of disorders including bleeding and thrombosis [233]. Plasmin is the most 

common fibrinolsyin and is formed from plasminogen by either tissue plasminogen 

activator (tPA) or urokinase plasminogen activator (uPA) - with uPA being produced by 

monocytes, macrophages and the urinary epithelium, and tPA by endothelial cells [233]. 

Interestingly, though tPA is released from endothelial cells, its role in vasculogenesis is 

not well documented, rather it has been more thoroughly studied in the context of fibrin 

clot breakdown. Instead the role of uPA in vessel formation has been more extensively 

investigated, and as well as converting plasminogen to plasmin, promotes the release 

and/or expression of transforming growth factor (TGF)-β, bFGF, VEGF and various 

MMPs, which are known to promote vessel formation [234]. However, due to the 

presence of HUVECs within our system, plasminogen would be expected to be 

predominantly activated by tPA. The main mechanism of action for aprotinin mediated 

fibrinolysis inhibition is the direct inhibition of plasmin [235, 236].  

Aprotinin is commonly used in organ-on-a-chip studies to limit fibrinolysis, and reduce 

gel degradation and vessel hyperplasia. It is typically added as a gel component during 

gel formation, at a concentration of 0.15 U/mL [199, 215, 237]. However, these cultures 

are not further supplemented with aprotinin for the duration of the experiment. We 

hypothesised that, long-term, this would not limit gel breakdown and vessel hyperplasia, 

as other studies would suggest. To test the impact of aprotinin on vessel formation, cell-

loaded gels were formed in the presence of 0.15 U/mL aprotinin alone or supplemented 

at a concentration of 0.15 U/mL throughout the experiment, or in the complete absence 
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of aprotinin during the gel formation stage and during culture. The end-point of this 

experiment was after 4 days, and analysis of total tube length and vessel diameter. 

 

Figure 15. Impact of aprotinin on vessel formation. Three different conditions were 

investigated: control, 0.15 U/mL aprotinin supplemented during fibrin gel formation 

alone; + aprotinin, 0.15 U/mL aprotinin supplemented throughout; - aprotinin, no 

aprotinin supplemented at any point. A)  Aprotinin supplemented medium significant 

reduces total tube length compared with control.  B) Aprotinin has no significant impact 

on vessel diameter. Vessel diameters: 57.0 ± 3.8, 52.4 ± 2.3 and 56.6 ± 5.5 µm for control, 

+ and - aprotinin, respectively. C) Representative images. Time points: Day 4. 

Supplemented with 50 ng/mL VEGF. Red, phalloidin. Scale bar: 300 µm. Statistics 

correspond to N=4. 

 

No significant difference in total tube length between the control (aprotinin introduced 

during gel formation alone) and the aprotinin-free culture (no aprotinin introduced at any 

point, see Figure 15) was observed. However, compared with the control, a significant 

decrease in total tube length in the cultures fully supplemented with aprotinin (during the 

gel formation and throughout the culture) was observed, 12.3 ± 0.0 vs 10.65 ± 0.4 mm 
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respectively. This suggests that aprotinin supplemented fibrin gels does not impact gel 

breakdown, and that aprotinin should be supplemented in the medium throughout the 

experiment in order to inhibit fibrinolysis significantly. In addition, though total tube 

length was inhibited, aprotinin had no impact on vessel diameter, further suggesting that 

the effect of aprotinin at commonly used concentrations is limited. 

These results suggest that the addition of aprotinin during fibrin gel formation alone, at 

the concentration stated, does not impact vessel formation or stabilisation. This has not 

been well described in the literature, and aprotinin is often simply used without further 

experimental justification [199, 215, 237]. In addition, a number of studies do not 

supplement cultures with aprotinin, further supporting that its addition during gel 

formation is superfluous [213, 222]. If intending to use aprotinin to inhibit fibrinolysis, it 

should be supplemented in the medium throughout the culture and potentially at higher 

concentrations than what is commonly reported in the literature. Future experiments 

described in this thesis did not use aprotinin to limit fibrinolysis as no marked 

improvement to the vasculature was observed.   

 

8.8. Impact of thrombin solution on vessel formation 

In vivo fibrin is most commonly associated with the formation of haemostatic clots in 

conjunction with platelets. This process is adopted in vitro for the creation of fibrin gels 

using fibrinogen and thrombin. This is through the conversion of fibrinogen into fibrin, 

following the thrombin dependent cleavage of fibrinopeptides A and B, exposing a 

binding site in the central domain of fibrin, which is then able to interact with a 

complementary site at the end domain of other fibrin molecules [238]. The growth of 

these fibrin polymers leads to the formation of protofibrils, which upon aggregation form 

the thick fibres which are seen in 3D fibrin networks. As reported in the Material and 
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Methods section (p. 55), fibrin gels are formed by mixing a fibrinogen solution with a 

thrombin-HUVEC solution, in a 1:1 ratio, before injecting the mix into a microfluidic 

device, which is then stored in an incubator at 37 °C for 5 min before adding medium to 

the device reservoirs. In the literature, the makeup of these solutions is varied, with 

fibrinogen and thrombin being dissolved in either DPBS or EGM-2 before mixing [199, 

222, 231, 237, 239]. The impact of these differing conditions is largely unreported and 

was thus further examined. It was hypothesised that EGM-2 would be the preferred 

medium as HUVECs would not become deprived of nutrients during gel cross-linking. 

Fibrinogen solutions are first allowed to dissolve for 2 h, at 37 °C, before filtering and 

use, to ensure adequate and consistent dissolution. When dissolved in EGM-2, fibrinogen 

prematurely cross-linked, becoming difficult to handle and suggesting a previously 

undescribed catalytic activity of EGM-2 (data not shown). This effect has not been 

previously described in the literature by studies using a similar protocol [237, 239]. In 

these studies, the length of time required for complete dissolution of fibrinogen was not 

stated. If they used a shorter time than 2 h (what we report) this may explain why they 

did not observe the catalytic effect of EGM-2. Due to this effect, future fibrinogen 

solutions were always prepared in DPBS. 

Prior to cell resuspension, 4 U/mL thrombin solutions are produced (final thrombin 

concentration 2 U/mL). As stated, the main component of these solutions is either DPBS 

or EGM-2. The impact of dissolving thrombin in different solutions (EGM-2 or DPBS) 

was investigated. As shown in Figure 16, no significant difference in vessel formation 

was observed between groups, with mean total tube length ± SEM being 18.1 ± 2.6 vs 

19.5 ± 2.6 mm for DPBS and EGM-2, respectively.  
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Following fibrinogen gelation and short-term nutrient deprivation, the ability of HUVECs 

to undergo vasculogenesis is not impaired. This relative robustness would explain the 

varied methods observed in literature regarding this gelation step. The impact of this step 

may have been more pronounced if the cells were nutrient deprived for longer, however, 

studies report incubating samples for up to 10 min following gel injection with no 

observed detrimental effects [215, 222].  To improve reproducibility, future experiments 

were conducted with thrombin mixed with EGM-2 prior to cell resuspension. 

Interestingly, thrombin concentration is believed to have a significant impact on vessel 

formation, credited with the changes in the observed fibrin ultrastructure (an increased 

gel permeability at low thrombin concentration) [240]. However, the impact of thrombin 

concentration on vasculogenesis was not investigated in this thesis, as 2 U/mL thrombin 

(final concentration) produced a hydrogel which was easy to handle and required only 5 

min incubation to cross-link. 

 

Figure 16. Impact of thrombin solution on vessel formation. A) No significant impact 

on tube formation was discovered, whether thrombin was dissolved in DPBS or EGM-2. 

B)  Representative images. Time points: Day 4. Supplemented with 50 ng/mL VEGF.  

Time points: Day 4. Supplemented with 50 ng/mL VEGF. Red, phalloidin. Scale bar: 300 

µm. Statistics correspond to N=3. 
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8.9. Role of type 1 collagen on vessel formation 

Type 1 collagen (T1C) is the most abundant collagen found in the body and is an 

important structural support for cells. A report by Newman et al describe how in vitro 

endothelial lumenogenesis can be inhibited with the knockdown of various fibroblastic 

genes, including T1C [241]. They went on to demonstrate that this abrogation in lumen 

formation may be reversed with the addition of a cocktail of exogenous ECM 

components, including T1C. Due to T1C’s ubiquity and reports of enabling angiogenesis, 

it is commonly used as an ECM component in microvascular systems [199, 200, 241].   

 

Figure 17. Impact of type 1 collagen on vessel sprouting. A) The addition of T1C to 

fibrinogen gel has no significant impact on vessel sprouting compared with no T1C, 16.7 

± 0.7 and 16.4 ± 1.2 mm for 0.0 and 0.2 mg/mL, respectively B) Representative images. 

Time points: Day 4. Supplemented with 50 ng/mL VEGF. Red, phalloidin. Scale bar: 300 

µm. Statistics correspond to N=3. 

 

The impact of T1C on vessel formation was further investigated in this thesis. Total tube 

formation was examined with and without 0.2 mg/mL exogenous T1C following 4-days 

culture. We selected to investigate 0.2 mg/mL T1C as this concentration is reported in 

similar micro-physiological systems [199]. The addition of T1C led to no significant 

difference in total tube length (see Figure 17). This is in agreement with reports indicating 
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that the knockdown of collagen 1 significantly inhibits lumen formation, but has no 

impact on endothelial sprouting [241]. However, due to the short length of our experiment 

neither conditions clearly promoted lumenogenesis (although this was not specifically 

characterised and is only based on the examination of bright field images). To investigate 

further, future experiments could determine by which time-point lumination is observed, 

as a result of T1C concentration. However, this was not further investigated in this study 

and subsequent devices were not supplemented with exogenous T1C. This is further 

beneficial as when T1C is added to fibrinogen solutions it rapidly cross-links, which can 

lead to variation in results, especially if carrying out multiple experiment in parallel. 

 

8.10. Impact of fibrinogen concentration on vessel formation 

Fibrin gels are one of the most commonly used hydrogels when developing vascular 

networks in microfluidic devices, with concentrations of fibrinogen ranging from around 

2.5-10.0 mg/mL. However, across this concentration range, gel stiffness differs 

considerably, with the Young’s Modulus increasing with fibrinogen concentrations 

associated with considerable changes in the gel structure [186, 242].  Increasing fibrin 

concentration (between 1.5-10.0 mg/mL) and stiffness has been reported to attenuate 

vessel formation in vitro [222, 243]. As such, it was hypothesised that increasing 

fibrinogen concentration would alter HUVEC vascularisation. 

Four different concentrations of fibrinogen were investigated (1.25, 2.5, 5.0 and 10.0 

mg/mL). As shown in Figure 18, following 4-days vasculogenesis, no significant 

difference in total tube length is observed (mean total tube lengths ranging from 15.1-

16.5 mm). In addition, there is no significant difference in vessel diameters between 

groups (mean vessel diameter ranging between 34.7 to 39.6 µm). HUVECs cultured in 
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1.25 mg/mL fibrin degraded the matrix and adhered to the underlying glass substrate, so 

images were not quantified. 

 

Figure 18. Impact of fibrinogen concentration on vessel formation. A) Impact of 

fibrinogen concentration on total tube length and (B) vessel diameter after 4 and 10 days 

of vasculogenesis. C) Representative images. Red, F-actin. Scale bar: 300 µm. D) Vessel 

formation in 1.25 mg/mL fibrinogen was investigated, these gels quickly degraded, with 

large areas of HUVECs adhering to the underlying glass substrate. Red, F-actin. Scale 

bar: 300µm. E) Image supporting lumen formation after 10-days vasculogenesis. Green, 

CD31. Scale bar: 75µm. Supplemented with 50 ng/mL VEGF. Statistics correspond to 

N=3. 
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Following 4-days vasculogenesis, vessels appear immature and largely non-lumenised 

according to non-quantified bright-field images. To promote the formation of a mature, 

perfusable, vascularised network the culture period was extended to 10 days. In this set 

of experiments, the impact of 2.5, 5.0 and 10.0 mg/mL fibrinogen on vasculogenesis was 

examined. However, following 10-days culture, increasing fibrinogen concentration still 

had no impact on either total tube length (mean total tube length ranging between 6.2 and 

8.1 mm) or vessel diameter (mean diameter ranging between 89.8 and 113.4 µm). 

However, the time point significantly impacts the structure of the observed vessels. After 

4-days vasculogenesis, vessels appear immature, characterised by extensive sprouting 

and low diameters. In contrast, by day 10, vessels appear much thicker, with extensive 

lumen formation, and reduced sprouting (Figure 18). This is believed to result from 

nascent vessels merging and endothelial cell proliferation, forming larger vessels, but 

leading to a reduced overall total tube length. Analysis between day-4 and day-10 samples 

was not statistically investigated as these represent separate experiments. 

It was hypothesised that increasing fibrinogen concentrations would attenuate vessel 

formation, similar to observations made by Whisler et al [222]. Their experimental 

system used a five-channel microfluidic device, with a central vasculogenesis 

compartment separated by two, lateral medium channels from two stromal support 

compartments. They reported that increasing fibrinogen concentrations from 1.5 to 10.0 

mg/mL led to an increased number of branches and branch length, a reduction in vessel 

diameter, but no overall difference in % area coverage. To promote vessel formation, they 

co-cultured HUVECs with NHLFs in stromal channels, and did not add further exogenous 

factors. However, a previous study by Ghajar et al suggests that the results observed by 

Whisler may be due to NHLF location and growth factor diffusion [243]. In their study, 

HUVEC-coated micro-beads were embedded within a fibrin gel, and fibroblasts were 
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suspended on-top or throughout the gel. When NHLFs were cultured on top of the gel, 

increasing fibrinogen concentrations (2.5-10.0 mg/mL) inhibited total network length and 

vessel segments, however, when NHLFs were seeded throughout the gel this inhibitory 

effect was not observed. Ghajar concluded that this observation was due to higher 

concentration fibrin gels restricting diffusive transport of growth factors and cytokines. 

Our system features a 1000 µm wide central channel, with lateral medium channels 

supplemented with exogenous VEGF. Due to the narrow width and presence of high 

concentrations of VEGF, no growth factor gradient is sustained. Hence, similarly to 

Ghajar, there is no observed difference in tube length or vessel diameter when fibrinogen 

concentration is increased.  

 

8.11. Impact of channel width on vessel hyperplasia 

Previous experiments used microfluidic devices with a central gel channel 75 µm high 

and 1000 µm wide, created according to the device manufacturing protocol described in 

the Materials and Methods section (p. 59). Device dimensions are an important 

consideration for the design of microfluidic systems, which is typically poorly discussed 

when describing new organ-on-chip models. The height of 75 µm was selected as similar 

heights are frequently reported in the literature, and because significantly thicker channels 

require thicker resists, which are notoriously difficult to pattern reliably (and lead to 

difficulty of PDMS stamp peel off) [215]. This height allows the formation of a 3D 

‘monolayer’ vascular bed, enabling simple imaging and quantification of tube formation. 

According to the literature, channel widths typically range between 1000 - 1300 µm, these 

widths allow cells located in the centre of the channel to still receive sufficient nutrients 

to grow and proliferate [60, 213, 222, 244]. However, little has been reported on the use 
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of narrower channels (<1000 µm). This section investigates the impact of narrower 

channels on vessel formation. 

 

Figure 19. Impact of channel width on vessel hyperplasia. Vascular networks were 

formed in gel channels either 700 or 1000 µm in width. A) Narrow channels promoted 

the formation of vessels with significantly larger diameters, B) which more extensively 

cover the channel. C) Representative images. Time points: Day 10. Supplemented with 

50 ng/mL VEGF.  Green, CD31. Scale bar: 300 µm. Statistics correspond to N=3. 

 

To investigate the importance of device dimensions on vasculogenesis, two chip designs 

were compared with different central gel channel widths: 700 and 1000 µm. Following 

gel injection with 6 × 106 HUVECs/mL, samples were cultured for 10 days. As seen in 

Figure 19, culturing samples in devices with 700 µm width central channels, compared 

with 1000 µm channels, led to the development of vessels with significantly larger 

diameters, 138.3 ± 5.9 and 92.5 ± 1.9, respectively. In addition, these larger vessels cover 
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a significant portion of the central channel, demonstrated by their overall channel area 

coverage of 68.5 ± 2.3%, compared with 40.7 ± 3.5% area coverage of vessels cultured 

in wider channels. This impact of channel width promoting vessel hyperplasia has not 

been previously described in the literature. It is not understood as to why this is observed, 

we hypothesised it could be due to vessels in closer proximity merging and forming 

larger, wider vessels. However, the same density of gel and HUVECs would be similarly 

injected into 1000 µm devices, suggesting there is an overlooked parameter which is 

currently unknown 

 

8.12. Summary 

The initial phase of this thesis aimed to establish a reproducible vasculogenesis model 

which could be adapted to more complex culture models. The final established system 

that will be used in subsequent sections is described in Table 4, and can be compared to 

what was initially investigated and used in Table 3. A number of components, including 

T1C and aprotinin, were shown to be superfluous to the assay, as they did not offer any 

key benefit when included and were thus phased out subsequent experiments. In addition, 

certain parameters which are frequently altered throughout the literature, such as the 

make-up of the thrombin solution, were shown to have no impact on angiogenesis and 

were thus dependent on the researchers own preference. However, if certain issues 

became a problem the knowledge gained from these experiments could be used, i.e. if 

vessel stability became a problem with long-term culture, aprotinin may be an appropriate 

compound to use to inhibit expansive vessel growth. Furthermore, we have established 

conditions to promote vessel formation that works within our laboratory, but these 

conditions may not be reproducible to all labs, due to individual handling techniques, 

different cell sources etc. However, the understanding of how these different parameters 
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impact vessel formation may be used. The next stage of this thesis will present the use of 

on-chip vascular networks to investigate interactions between endothelial cells and 

stromal cells, including pericytes and normal human lung fibroblasts. 

Table 4. Standard fibrinogen gel components (final concentrations) 

 Initial Finalised 

Component Concentration/time Concentration/time 

HUVECs (Million/mL) 6 6 

Fibrinogen (mg/mL) 2.5 (PBS) 10 (PBS) 

Thrombin (U/mL) 2 (PBS) 2 (EGM-2) 

Type 1 Collagen (mg/mL) 0.2 - 

Aprotinin (U/mL) 0.15 - 

VEGF (ng/mL) 50 50 

Duration (Days) 4 10 
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9. Investigating HUVEC-stromal cell interactions 

 

9.1. Introduction 

Following the development of a reproducible vascular system described in section 8, the 

next phase was to investigate the interactions between the vasculature and various stromal 

cells, notably, normal human lung fibroblasts (NHLFs) and pericytes. These cells were 

chosen due to their current use in organ-on-a-chip studies to promote and stabilise vessel 

formation. To investigate the impact these cells had on the vasculature, various 

parameters were examined, including the total tube length, vessel diameter and junction 

marker expression.  

 

9.2. Four-channel device used to investigate paracrine signalling 

Experiments detailed in section 8, cultured cells in a three-channel PDMS device with a 

single gel channel. This section will explore stromal paracrine signalling which requires 

a different device design. Many studies have used stromal support cells to promote vessel 

formation and stabilisation, which are typically seeded in channels adjacent to the 

vascular compartment, separated by a medium channel [222, 245]. However, the device 

we designed to investigate paracrine signalling, unlike the aforementioned designs, 

features two gel channels directly parallel, with no separating medium channel - see 

Figure 20. This device was chosen as it may also allow the investigation of cell invasion 

into the parallel gel channel.  The channel dimensions are 700 µm width, 75 µm height, 

with channels separated by posts 100 µm long with 100 µm gaps. As detailed in Figure 

20, the two medium channels are labelled LM and RM, with the gel channels labelled LG 

and RG. 
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Figure 20. Schematic of four-channel device. Schematic representation of the four-

channel device. This system has two central gel channels (LG and RG) and two lateral 

medium channels (LM and RM). Each channel is 75 µm in height and 700 µm in width. 

Posts are 100 µm in length with 100 µm gaps between posts. Schematics are not to scale. 

 

9.3. Investigating the impact of NHLFs on HUVEC vessel sprouting 

Fibroblasts are an ill-defined cell type with no reliable marker, instead they are largely 

defined by location and what they are not (e.g. non-endothelial, -smooth muscle or -

epithelial cells) [241]. However, they are recognised as being important mediators of 

ECM synthesis and maintenance, and producers of various angiogenic growth factors 

[246-249]. It is through this combination of ECM remodelling and growth factor secretion 

that fibroblasts have been strongly linked with the promotion of vessel formation [222, 

241], and have been extensively used in the promotion of angio- and vasculogenesis in 

vitro [215, 216, 243, 244, 250]. Indeed, the addition of NHLFs into in vitro culture 

systems has been shown to null the requirement of further exogenous growth factors to 
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promote vessel formation [199]. Analysis of the NHLF secretome by Hughes et al linked 

Ang-1, angiogenin, hepatocyte growth factor (HGF), TGF-α, and tumour necrosis factor 

(TNF) as being important mediators of endothelial sprouting [241]. In addition, collagen 

alpha 1, procollagen C-endo-peptidase enhancer 1, and transforming growth factor-β-

induced protein ig-h3 were identified as important mediators of lumen formation [241].  

Given the importance of fibroblasts in promoting vasculogenesis, the impact of co-

culturing HUVECs and NHLFs was investigated. Though other fibroblast cell lines are 

also easily available, NHLFs were chosen due to their current use in organ-on-a-chip 

research, allowing for more direct comparisons with alternative studies. To investigate 

the impact of NHLFs on HUVEC tube formation the four-channel chip shown in Figure 

20 was used. This chip design has four parallel channels, with two lateral media channels 

and two central gel channels. In this experiment, 6 × 106 HUVECs/mL and either 6 × 105 

NHLFs/mL or an acellular fibrin gel was seeded in separate, parallel gel channels - 

allowing the investigation of paracrine signalling.  

Due to experiments running in conjunction, the vascular system used in this experiment 

is different to what we proposed in section 8, as cells were cultured in 2.5 not 10.0 mg/mL 

fibrinogen gel. In addition, the end-point of this experiment was day 4. In our system, 

NHLFs significantly promote vessel formation in the absence of exogenous VEGF, with 

total tube length being 2.1 ± 0.7 and 4.9 ± 0.6 mm, for HUVEC mono-culture and 

HUVEC + NHLFs, respectively (see Figure 21).  However, when EGM-2 was 

supplemented with 50 ng/mL VEGF, NHLFs had no significant impact on vessel 

formation (Figure 21). Suggesting, HUVECs supplemented with 50 ng/mL VEGF have 

already reached an optimum vessel coverage, as quantified by total tube length, and that 

further factors secreted by NHLFs do not promote further vessel growth. However, when 
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no exogenous VEGF is supplemented, the NHLFs secreted soluble growth factors are 

able to promote vessel sprouting and tube formation.  

 

Figure 21. NHLFs promote short-term vessel formation. A) Impact of NHLFs on 

vessel formation, with and without exogenous VEGF (50 ng/mL). When VEGF is not 

present NHLFs promote a significant increase in total tube length (mm). This response is 

not observed in the presence of VEGF. B) shows representative images of samples. 

Green, CD31. Scale bar: 300 µm. Statistics correspond to N=3. 

 

The end-point of this experiment is day 4. As mentioned in section 8, this time point does 

not allow the formation of mature, lumenised vessels. A shorter time point was used due 

to observed vessel regression at later points if samples were not further supplemented 
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with exogenous VEGF (data not shown). This is in contradiction to what has been 

previously reported in the literature, in that NHLFs promote the formation of an extensive, 

mature, stable vasculature [215, 244]. In these studies, NHLFs were typically seeded in a 

stromal compartment which is separated from the vascular compartment by a medium 

channel. This is unlike the devices used in this thesis which utilise directly adjacent gel 

channels. The use of a stromal compartment could perhaps enable a stronger 

concentration gradient promoting further vessel formation.  In addition, alternative 

studies used much higher NHLF densities, between 1-8 × 106/mL, whereas in this thesis 

6 × 105 NHLFs/mL were used. The increased number of NHLFs used in alternative 

studies may cause an increase in the secretion of angiogenic growth factors compared 

with our study - promoting the formation of a more extensive, mature vasculature than 

what is being reported in this thesis. The lower density of fibroblasts used in this thesis 

was due to potential comparisons between NHLF-HUVEC and G33-HUVEC interactions 

later. As such, 6 × 105 G33s/mL was seen as optimal as extensive fibrin gel degradation 

was otherwise observed, thus 6 × 105 NHLFs/mL were used.  

Though NHLFs significantly promoted short-term vessel formation, they were not further 

investigated in this thesis. This is due to them being superfluous to forming a mature 

vasculature, as the addition of exogenous VEGF also significantly promotes vessel 

formation. Indeed, the addition of VEGF accounted for the greatest variance in results. 

Furthermore, the addition of NHLFs cannot be reversed, however, if desired, the 

concentration of VEGF is able to be manipulated during the duration of experiments. In 

addition, the use of NHLFs to promote vasculogenesis requires more time and is more 

expensive than using exogenous factors. Instead, pericytes were selected for further 

investigation.  
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9.4. Investigating the interactions between HUVECs and pericytes 

Instead of further experiments investigating the interactions between NHLFs and the 

vasculature, studying pericyte-HUVEC interactions seemed more appropriate regarding 

the scope of this thesis. Pericytes, or ‘Rouget cells’ [251], are poorly described and 

recognised, with literature generally using the term pericyte to describe any microvascular 

peri-endothelial mesenchymal cell located within the vascular basement membrane [64]. 

Morphologically, pericytes often span and enclose multiple endothelial cells. They 

achieve this with primary cytoplasmic processes running along the length of the 

abluminal surface of the endothelium. From these primary processes, secondary processes 

run perpendicularly, encircling the endothelial tube [64]. Though pericytes are largely 

separated from endothelial cells by the basement membrane, there are areas of direct 

contact between the two cell types. These include gap junctions, peg-and-socket contacts 

and adhesion plaques, each of which have their own specific role in contributing to 

pericyte-endothelial signalling. Though not in direct contact, adhesion plaques, as the 

name suggests promotes adhesion between pericytes and endothelial cells, and are mainly 

composed of fibronectin [252, 253]. Gap junctions directly connect pericytes with 

endothelial cells, allowing the direct transfer of small molecules and ions [254-256]. Peg-

and-socket junctions are pericyte projections, protruding into endothelial invaginations, 

which are linked with pericyte-endothelial juxtacrine signalling [257]. Indeed, Wakui 

revealed these invaginations are the location of endothelial  EGF receptor (EGFR), 

which promotes angiogenesis when active [258]. In addition, N-cadherin is expressed in 

peg-and-socket junctions, further promoting pericyte-endothelial adhesion [259]. 
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9.5. Determining the role of pericyte paracrine signalling on vessel formation 

Though pericytes are typically found surrounding the endothelium, pericyte-HUVEC 

paracrine signalling was first investigated. This was to observe if similar effects were 

seen when investigating juxtacrine pericyte-HUVEC signalling. The role of pericyte 

paracrine signalling has been largely unexplored in humans, but some interesting ovine 

studies have suggested pericytes direct endothelial sprouting by acting as lead cells and 

subsequently secreting VEGF [260, 261].  In addition, the HUVEC-to-pericyte paracrine 

signalling system is essential for the recruitment of pericytes to immature, sprouting 

vessels. Though other proteins have been linked with pericyte recruitment, the PDGF-B 

- PDGFR-β axis is the most studied and believed to have the most importance in pericyte 

recruitment to vessels [155, 165, 262]. Indeed, PDGF-B or PDGFR-β null mutant mice 

feature many vascular abnormalities leading to oedema and embryonic lethality [155]. 

According to Armulik et al, endothelial cell-to-pericyte ratio is anywhere between 1:1 

and 10:1 depending on the tissue of origin [64]. These ratios would allow sufficient 

abluminal coverall to promote proper endothelium function [64]. Therefore, a 10:1 ratio 

of endothelial cell-to-pericytes was used in this thesis to ensure pericyte coverage of the 

endothelium, though this is considerably lower than what has been previously used in 

literature [156, 207]. Pericyte-to-HUVEC paracrine signalling was investigated using a 

four-channel device (shown in Figure 20). 6 × 106 HUVECs/mL and 6 × 105 pericytes/mL 

were separately added to the central gel channels (LG and RG). The end-point of this 

assay was day 4, as similar difficulties were encountered as when co-culturing HUVEC-

NHLFs in the absence of additional VEGF.  
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Figure 22. Pericyte paracrine signalling promote vasculogenesis. A) Pericyte 

paracrine signalling promotes a significant increase in total tube length (mm) when 

cultured in non-supplemented EGM-2, though no significant difference was observed 

when cultured 50 ng/mL with exogenous VEGF B) Additionally, pericytes had no 

significant impact on vessel diameter. C) Representative images. Green, CD31. Scale bar: 

300 µm. Statistics correspond to N=3. 
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As shown in Figure 22, in the absence of exogenous VEGF, pericytes promote a 

significant increase in vessel formation compared with HUVEC mono-culture (5.8 ± 0.3 

and 2.6 ± 0.5 mm, respectively). In addition, pericytes had no significant impact on vessel 

formation when exogenous VEGF was added, compared with HUVEC mono-cultures, 

similarly to what was observed with NHLFs. To observe if the pericytes reported impact 

on vessel hyperplasia requires direct contact, vessel diameter was also examined. As 

shown in Figure 22, pericyte paracrine signaling had no impact on vessel diameter when 

cultured with or without exogenous VEGF. These results suggest pericytes, like NHLFs, 

are able to promote vasculogenesis through paracrine signaling. This could be through 

the release of various angiogenic growth factors, such as VEGF, though this was not 

further examined. Interestingly, these results suggest that pericyte paracrine signaling 

does not impact vessel morphogenesis, which was demonstrated by the lack of difference 

in vessel diameter. Rather, vessel morphology may be more tightly regulated by 

juxtacrine pericyte signaling. This was further examined by the co-culture of HUVECs 

and pericytes within the same gel channel. 

 

9.6. Investigating the role of pericytes on vessel sprouting and vessel diameter 

Pericyte paracrine signalling promoted vasculogenesis, but had no impact on vessel 

morphology. As discussed, pericytes are normally found in direct contact with endothelial 

cells through three main interactions; adhesion plaques, gap junction and peg-and-socket 

junctions [263]. These interactions were further examined by co-culturing HUVECs and 

pericytes in the same microfluidic channel. 
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Figure 23. Short-term impact of pericytes on endothelial morphology and 

vasculogenesis. A) Pericytes do not significantly impact HUVEC sprouting after 4-days 

direct co-culture. B) However, they do significantly reduce vessel diameter when 

compared with HUVEC mono-culture. C) Representative images. Green, CD31. Scale 

bar: 300 µm. Statistics correspond to N=3. 

 

The impact of pericytes on vessel formation was investigated at two different time-points 

(days 4 and 10) to examine any differences in vasculogenesis or vessel diameter between 

these time-points. These experiments were conducted in a three-channel microfluidic 

device, with a fibrin gel embedded with the respective cells in the central channel. As 

stated previously 6 × 106 HUVECs/mL and 6 × 105 pericytes/mL were used for this 

experiment. However, these experiments were conducted in the presence of VEGF due 

to vessel regression at later time points (beyond 4-days) if absent.  
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Co-culturing HUVECs and pericytes had no significant impact on total tube length when 

compared with HUVEC mono-cultures following 4-days culture (Figure 23, mean total 

tube lengths between 11.9 - 14.0 mm). However, the addition of pericytes led to a 

significant reduction in vessel diameter when compared with HUVEC mono-cultures, 

vessel diameters being 41.1 ± 2.9 and 59.4 ± 1.1 µm, respectively. 

As described in Figure 18, following 10-days culture HUVECs undergo extensive vessel 

hyperplasia, concurrently a clear reduction in overall tube length is observed. Pericytes, 

which are known to inhibit vessel hyperplasia, were hypothesised to stabilise vessel 

growth. This can be seen in Figure 24, with pericytes significantly promoting total tube 

length when compared with HUVEC mono-culture, following 10 days of culture. 

Concomitantly, pericytes significantly reduce vessel diameter and hyperplasia compared 

with HUVEC mono-cultures (48.06 ± 3.0 and 112.7 ± 12.3 µm, respectively). Conducting 

statistical quantitative analysis between day 4 and day 10 conditions is not possible, due 

to them being separate, unrelated repeats. However, this trend would suggest that at day 

4, HUVEC vessels are being restricted by the pericytes, which inhibit their diameter, but 

not actual vessel formation. However, by day 10, HUVEC vessels undergo continued 

proliferation and growth, promoting vessel diameter and eventually causing vessel 

merger - leading to a reduction in total tube length. Whereas, pericytes restrict vessel 

diameter, preventing vessel merger and therefore maintain overall vessel length. In 

addition, pericytes appear to be directly interacting with HUVECs (see Figure 24), with 

single pericytes interacting with multiple endothelial cells. Similar interactions are 

reported in the literature, with single pericytes coordinating signalling between multiple 

endothelial cells [264] 
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Figure 24. Long-term impact of pericytes on endothelial morphology and 

vasculogenesis. A) Pericytes led to a significant increase in vessel length after 10 days of 

co-culture, compared with HUVECs in mono-culture. B) In addition, they significantly 

inhibit vessel hyperplasia and restrict their diameters. C) Representative images. D) 

Representative images of HUVECs co-cultured with pericytes in VEGF-supplemented 

EGM-2. Red, CD31. Green, α-SMA. Blue, DAPI. Scale bar: 300 µm. Statistics 

correspond to N=3. 
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In agreement with our results, pericytes and other stromal support cells have been 

reported to limit vessel hyperplasia in vitro [156, 207, 265]. However, pericytes impact 

on overall vessel formation is less well-documented and somewhat contradictory. 

Pericytes have been reported to promote the number of branch points and junctions within 

an endothelial network, to have no impact no impact on total vessel area, and to inhibit 

total tube length [156, 207, 265]. Interestingly, Lee et al report how pericytes significantly 

reduce the vessel area of networks at day 3, however by day 7 no difference is observed, 

when compared with HUVEC mono-cultures [207]. If Lee extended these experiments 

past day 7, perhaps pericytes would promote vessel formation, as we report in this thesis.  

This thesis proposes that pericytes significantly reduce vessel diameter and increase 

vessel length. We believe that these results are correlated, as through the inhibition of 

vessel hyperplasia, pericytes prevent the fusion of vessels - inhibiting the reduction in 

overall tube length. Interestingly, Hellström et al revealed that abrogation of endothelial-

pericyte interactions in vivo does not lead to any changes in micro-vessel density, length, 

and number of branch points [166]. However, a significant increase in vessel diameter 

was observed. This would suggest that in vivo loss of pericytes is not commonly 

associated with a reduction in vessel density or length - contradicting what we observe in 

Figure 24. However, compared with Hellström, we observe a larger change in vessel 

diameter in a smaller environment - promoting vessel merger and reduction in vessel 

length. The precise mechanism behind pericytes inhibition of vessel hyperplasia has not 

been elucidated, but two prevailing theories exist; inhibition of endothelial proliferation 

and physical contraction [253]. Orlidge et al revealed that direct co-culture of endothelial 

cells and pericytes, at a 10:1 ratio, significantly inhibited endothelial cell proliferation 

[266]. However, this inhibition was not observed if pericytes were cultured in separate, 

but connected, chambers. This is supported by Hirschi et al, who, using a similar assay, 
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demonstrated endothelial-pericyte heterotypic contact led to a 43% growth inhibition of 

endothelial cells [267]. Using electrophysiological recordings, Sakagami et al, revealed 

that pericytes action as contractile cells may also inhibit endothelial hyperplasia, via the 

PDGF-B - PDGF-β1 axis [160, 262]. These studies suggest that pericytes inhibit 

endothelial proliferation and reduce vessel diameter via direct or juxtacrine signalling - 

in agreement with what is reported in this thesis.  

 

9.7. Impact of pericytes on vessel permeability 

Pericytes play an essential role as support cells in the vasculature. Interestingly, the tissues 

with the highest densities of pericytes are neural tissues, with a clear positive correlation 

between pericyte coverage and endothelial barrier function [64]. This effect has been 

translated by a number of advanced in vitro models, which demonstrate enhanced barrier 

function when endothelial cells are co-cultured with pericytes [156, 268]. Analysis of 

human tissues has further demonstrated that the germinal matrix, an area of the brain 

vulnerable to haemorrhage in premature infants, contains significantly fewer pericytes 

than the neocortex and white matter, highlighting the important role pericytes play in 

inhibiting vessel hyper-permeability [269].  

To further examine the impact of pericytes on vessel permeability, an assay was 

established based upon a similar technique reported in the literature, and is discussed in 

greater detail in the Materials and Materials section of this thesis (p.60). Briefly, this assay 

compared HUVEC mono-culture with HUVEC and pericyte co-culture (6 × 106 

HUVECs/mL and 6 × 105 pericytes/mL). Following 10-days cell culture, medium was 

aspirated from the reservoirs and 70 kDa FITC-dextran was added to one of the side-

channels. FITC-dextran perfused through the vessel network and using real-time live 



104 
 

imaging, leakage from the intravascular to extravascular compartments over 30 min was 

analysed. Quantification of fluorescence intensity in the vessel lumen and in extravascular 

compartments, at different time points, enabled the monitoring of the permeability of the 

vessels formed to dextran macromolecules. This assay analysed three ROI per chip, 

plotting each ROI separately (N=4). In agreement with the literature, as shown in Figure 

25, pericytes significantly reduced vessel permeability in this system. The mean net-fold 

intensity change was 1.25 ± 0.18 in endothelial mono-cultures and 0.80 ± 0.14 in pericyte 

co-cultures. Pericytes are known to be an important regulator of vessel permeability, 

however this has not been quantitatively demonstrated in an advanced microfluidic 

system previously. Rather, many studies typically demonstrate that the vascular network 

is perfusable, using 70 kDa FITC-dextran, but do not attempt to quantify this process 

[156, 207]. This is perhaps a result with the difficulty of limiting leakiness at the point of 

opening between the side channels (in which media containing dextran is supplemented) 

and the vascular network. Indeed, when adding 70 kDa FITC-dextran to the side-channel 

of a microfluidic device, the dye will enter the vasculature through vessel lumen openings, 

between posts. If any fibrin gel is left exposed, the FITC-dextran will enter the gel, as 

well as the vessels, and perfuse through the system relatively fast, preventing vessel 

leakage analysis. Due to this, obtaining reproducible results is challenging, as such, 

groups have often shown qualitative rather than quantitative data when discussing vessel 

permeability [156]. To overcome this, only chips which had clear vessel openings in the 

gaps between posts were selected for further study. This technique could be optimised via 

the improvement of endothelial coverage of the side-channels, limiting fibrin gel 

exposure. An interesting study by Hughes et al coated the side-channels with laminin, 

reporting that this improved anastomosis and hence reduced FITC-dextran dye diffusing 

directly into the gel [159]. 
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Figure 25. Pericytes inhibit vessel permeability. A) Real-time, live-imaging measuring 

70 kDa FITC-dextran leakage from the intravascular to extravascular compartments, 

reveals that pericytes significantly inhibit vessel permeability B) Representative images. 

Areas within the dashed line are examples of ROI’s which could be analysed. Green, 70 

kDa FITC-dextran. Scale bar: 100 µm. Statistics correspond to N=4, with triplicates per 

repeat.  

 

9.8. Vascular networks express multiple junction markers 

Pericytes are known to reduce vascular permeability through a number of mechanisms, 

including the inhibition of transcytosis and paracellular transport, via reducing the 

number of endothelial cytoplasmic vesicles and regulation of tight junctions, respectively 

[167, 270, 271]. Tight junctions are composed of a number of transmembrane spanning 

proteins which act as a barrier, preventing the diffusion of polar substances from the 

blood, with ZO-1 playing an integral role in tight junction formation and stability [167]. 

Many organ-on-a-chip studies use junction marker expression to indicate vessel 

maturation [198, 207, 213].  However, few organ-on-a-chip studies quantify junction 

marker expression, and link these results with vessel permeability. This is perhaps due to 

the difficulties involved in removing the cells from within PDMS devices, limiting the 

molecular biological techniques available to researchers. To overcome this issue, Jeon et 
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al designed a novel microfluidic system which incorporated a PDMS construct non-

covalently bound to an underlying PSA film, when the experiment is completed the chip 

can be deconstructed and the cell-laden hydrogel removed [207]. With this device, Jeon 

demonstrated that pericytes significantly increase endothelial ZO-1 expression when 

compared with endothelial mono-culture. 

To investigate the role pericytes play in junction marker expression, we compared the 

expression of three separate junction markers, VE-cad, β-catenin and ZO-1 (in addition 

to CD31). These markers were selected due to their role in the establishment of adherens 

and tight junctions. The same cell densities as previously reported were used, 6 × 106 

HUVECs/mL and 6 × 105 pericytes/mL, with the end-point being day 10. As shown in 

Figure 26, both HUVEC mono-culture and HUVEC-pericyte co-culture vessel networks 

displayed clear expression of VE-cad, β-catenin and ZO-1 at cell-cell junctions, 

suggesting these vessels, even without pericytes, have achieved maturity and stability. 

This is in agreement with results presented in Figure 25, which show that HUVEC mono-

culture vessels still maintain a barrier function - though this is enhanced when co-cultured 

with pericytes.  

This experiment was able to demonstrate the expression of various junction markers in 

both HUVEC, and HUVEC and pericyte cultures. However, it was unable to investigate 

the relative expression of these markers. Future experiments could develop a chip with a 

PSA substrate to replace the underlying glass, similar to what was proposed by Jeon et al  

[207]. Using this system, we could investigate the expressions of different junction 

markers in comparison with the ubiquitous CD31 - with high expressions suggesting a 

more mature, developed vasculature.  
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Figure 26. Junction marker expression in vessels cultured with and without 

pericytes. Epifluorescence microscopy images of HUVECs or HUVEC and pericytes 

vascular networks following 10-days culture. These images display single Z-frames of 

the respective channels and a final merged Z-stack. A) β-cat expression. Red, β-cat. 

Green, CD31. Blue, DAPI. B) VE-cadherin expression. Green, VE-cad. Red, CD31. Blue, 

DAPI. C) ZO-1 expression. Red, Z01. Green, CD31. Blue, DAPI. Scale bar: 50 µm. 

Images represent N=3. 
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9.9. Impact of pericytes on vessel regression following induced stress 

As demonstrated so far, pericytes play an essential role within the vasculature, promoting 

endothelial sprouting through paracrine and juxtacrine signalling, inhibiting vessel 

hyperplasia, and reducing endothelium permeability. In addition to these effects, 

pericytes are also known to promote endothelial cell survival, with multiple pathways 

being linked with this effect, with the VEGF and Ang-1 pathways being particularly 

notable [154, 272, 273]. VEGF is recognised as being the most important angiogenic 

factor impacting the development and homeostasis of the vascular network. As such, it is 

unsurprising it has also been demonstrated to hugely impact endothelial cell survival. Ex 

vivo studies have shown that VEGF withdrawal from tumour samples leads to the 

selective apoptosis of endothelium unsupported by perivascular cells [274], indicating 

that pericytes play an important role in endothelial cell survival, perhaps through the local 

release of VEGF. This is further supported by Darland et al, who demonstrated that co-

culturing endothelial cells with pericytes promotes endothelial cell survival through a 

TGF-β1 dependent VEGF pathway [154]. VEGF promotes cell survival through the 

increased expression of B-cell lymphoma 2 (Bcl-2), in turn inhibiting caspase-3 

expression and its downstream apoptotic pathway including DNA fragmentation and 

activation of endonucleases [275]. In addition, Ang-1 has been linked with endothelial 

cell survival and vessel stabilization [273, 276, 277]. Interestingly, in a serum deprivation 

study Ang-1 was shown to attenuate endothelial apoptosis via TIE-2 stimulation - leading 

to the inhibition of caspases -3, -7 and -9 [273, 276].  
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Figure 27. Impact of nutrient deprivation on vascular networks. The impact of 

nutrient stress on vessel survival and stability was investigated using DPBS-medium 

solutions. A) Following 24 h, 90% DPBS does not have a clear impact on vessels. 

However, vessel regression and vessel thinning are observed in HUVEC mono-cultures 

and pericyte co-cultures, respectively, when cultured in 100% DPBS. B) Following 48 h 

HUVEC vessels are beginning to break-down, with further vessel thinning observed in 

pericyte co-cultures, when cultured in 90% DPBS. However, complete vessel regression 

is observed in HUVEC mono-cultures following 48 h in 100% DPBS. With pericyte co-

cultures beginning to break-down. Red, CD31. Scale bar: 300 µm. Images represent N=1. 

 

To further investigate the impact of pericytes on HUVEC survival an assay was 

established which used nutrient deprivation of established vascular networks. The 

induction of nutrient deprivation is a well-established technique to induce cellular stress. 

One particularly interesting study induced extreme stress in HUVECs by replacing 

medium with 90% DPBS for 4 days [216]. Due to the similarities between our systems, 

this technique of nutrient deprivation was further investigated. A similar co-culture as 

that previously described was employed, which used 6 × 106 HUVECs/mL and 6 × 105 

pericytes/mL cultured in the same gel channel for total period of 10 days. Firstly, 

comparisons were made between HUVECs or HUVEC and pericytes cultured in VEGF, 

90% PBS or 100% PBS for 24 h and 48 h culture. As shown in Figure 27, following 24 

h culture PBS treatments appear to be promoting vessel regression in both mono- and co- 
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cultures (images represent N=1). Following 48 h culture, 90% PBS treatment is causing 

vessel breakdown in mono-cultures, and further vessel regression in co-cultures. 

However, 100% PBS treatment has promoted the complete breakdown of the endothelium 

in HUVEC mono-cultures. Whereas, co-cultures still have vessel structure, though 

extensive vessel regression is observed and cell-cell adhesion appears disrupted. This 

would qualitatively suggest that pericytes are promoting vessel stability, however no 

quantification was conducted as this experiment was not repeated.  

 

Figure 28. Impact of nutrient deprivation on vascular networks after 72 h. A) 
Following 72 h in 90% PBS HUVEC mono-cultured vessels have completely regressed. 

However, pericytes appear to maintain vessel structure. B) Quantitative analysis reveals 

nutrient stress led to a significant reduction in total tube length in HUVEC and pericyte 

co-cultures when compared with control. Red, CD31. Scale bar: 300 µm. Statistics 

correspond to N=3. 

 

Next, the impact of 90% PBS treatment on vessel stability following 72 h culture was 

studied (Figure 28). 100% PBS was not used for this time-point as it had already been 

demonstrated that by 48 h in HUVEC mono-culture, vessel integrity had entirely 

collapsed and was judged too harsh a condition. As shown in Figure 28, pericytes appear 

to promote vessel stability and cell survival from nutrient stress. 90% PBS treatment 

causes significant vessel regression in HUVEC and pericyte co-cultures when compared 

with VEGF supplemented medium, with mean total tube length reducing to 12.1 ± 0.8 
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mm compared to 15.3 ± 0.7 mm for VEGF supplemented medium. However, when 

HUVEC networks were mono-cultured in 90% PBS treatment, complete vessel 

breakdown was observed. These results highlight the protective impact of pericytes 

during serum deprivation and nutrient stress on the endothelium. 

Previous studies did not report the impact of PBS treatment and nutrient deprivation on 

the vascular networks, instead, they described the impact of stress on spheroids embedded 

within the vascular network [216]. However, pericytes have been repeatedly shown to 

promote endothelial cell survival in vitro [154, 272, 274]. Though our assay did not 

directly analyse apoptosis, it did demonstrate that pericytes promote vessel stability under 

induced nutrient stress. Ramsauer et al also describe how the addition of pericytes to an 

in vitro model promotes endothelial resistance to apoptotic stimuli and maintains vessel 

integrity [278]. Perhaps the most elegant and in depth study concerning pericyte-induced 

endothelial cell survival, was conducted by Franco et al [272]. They proposed endothelial 

cells recruit pericytes through PDGF-BB secretion. Pericytes subsequently deposit 

vitronectin which stimulates the endothelial integrin αv, leading to downstream activation 

of NFκB. This promotes autocrine VEGF-A signalling and Bcl-w expression, and 

promotion of endothelial cell survival. 

 

9.10. Summary 

This section describes the interactions between endothelial cells and two different 

regulators of vasculogenesis; fibroblasts and pericytes. NHLFs were selected due to their 

ubiquitous use in other advanced in vitro microfluidic models and their reported ability 

to significantly enhance vessel formation [199, 222]. The ability of NHLFs to promote 

vasculogenesis via paracrine signalling was demonstrated, however, this appeared as a 
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short-term effect and did not promote the formation of mature, stable vessels. Instead, 

pericytes ability to promote stable vessel formation was further evaluated. As shown, 

pericytes promoted short-term vessel formation through paracrine signalling. However, 

it was through juxtacrine signalling that pericytes had the most significant impact, 

demonstrably inhibiting vessel hyperplasia, promoting total tube length, and reducing 

vessel permeability. The addition of pericytes to vascular networks was also shown to 

significantly inhibit vessel regression following nutrient deprivation, when compared 

with mono-cultured HUVEC vessels. These effects are in agreement with the literature 

which shows pericytes play an important role regulating vascular maturation [155, 156, 

165, 166, 207].  
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10. Investigating the interactions between endothelial 

and high-grade serous ovarian cancer cells 

 

10.1. Introduction 

Angiogenesis plays an essential role in tumour development. Indeed, tumours may only 

reach 1-2 mm diameter before requiring a vascular network to supply the proliferating 

cells with oxygen and nutrients, and to remove waste products [60]. Angiogenesis has 

therefore become a key target in cancer therapy, including HGSOC therapy. This has led 

to the successful incorporation of bevacizumab, a VEGF-A blocking antibody, into 

ovarian cancer adjuvant and neo-adjuvant treatment [91, 92]. However, the exact role the 

vasculature plays in ovarian cancer progression is contentious, due to the mechanism 

behind ovarian cancer spreading/metastasis being disputed.  As discussed more 

extensively in the introduction (p. 20), HGSOC is typically regarded to spread through 

direct transcoelomic dissemination, aided by the peritoneal circulation [38, 40]. However, 

HGSOC may also spread via hematogenous metastasis [45]. Regardless of the prevalent 

mechanism of disease spreading, angiogenesis is an important mediator of disease 

progression, with high micro-vessel density an independent marker for poor overall and 

progression-free survival in patients with epithelial ovarian cancer [89]. In addition, high 

tissue expression of VEGFR-2 has been positively correlated with aggressive tumour 

invasion in ovarian carcinoma [279]. These studies highlight the importance of an 

extensive vascular network in disease progression.  
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10.2. G33 viability within fibrin gels 

As discussed in the introduction of this thesis, many commonly used HGSOC cells lines 

are genetically non-representative of the disease, including SKOV3 and IGROV1 [181]. 

As such, investigating cell behaviour and novel chemotherapeutic agents on these cells 

may give misleading results. Due to this alternative cell sources were explored. G33 

cancer cells, a primary cell line generated by the Balkwill lab, are a much improved option 

as they were isolated from the omentum of a patient with advanced HGSOC. G33 cells 

were extensively characterised, confirming the expression of various HGSOC genetic and 

protein markers, including TP53 over-expression and PAX8 expression, and 

characterised as a genetically distinct cell line by short-tandem repeat sequencing.  Hence, 

G33 cells were selected for this study owing to their relevance to HGSOC.  

The impact of embedding G33 cells in fibrin gels was assessed. This was to ensure that 

the culture conditions in microfluidic chips were suitable for further co-culture 

experiments with HUVECs, to investigate endothelial-HGSOC cell interactions. G33 

cells were cultured in PDMS well, as described in p 56, mimicking exposure to the PDMS 

channels of chips. G33 cells were cultured in 2.5 mg/mL fibrin gel, with additional 0.15 

U/mL aprotinin and 0.2 mg/mL T1C. The impact of cell density on viability was 

investigated with 1, 2.5 and 5 × 105 G33s/mL fibrin gel being explored. Cells were 

cultured in EGM-2 for 4 days before carrying out a LIVE/DEADTM assay, as described 

in the Materials and Methods section (p. 56). Day 4 was selected as the endpoint as this 

was the initial endpoint for concurrent vasculogenesis experiments. As shown in Figure 

29, G33 cells maintain a high viability at day 4, with mean cell viabilities between 76.2 

and 80.7%. G33 density had no significant impact on cell viability.  

The impact of VEGF on G33 viability was also examined, this was to observe whether 

HUVEC culture medium had any impact on G33 viability. 2.5 × 105 G33s/mL were 
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selected and cultured for 4 days in basal EGM2 or 50 ng/mL VEGF supplemented EGM-

2. The addition of VEGF had no significant impact on cell viability, see Figure 29, with 

mean cell viabilities of 84.5 ± 3.9 and 79.5 ± 1.7 for CTRL and VEGF-supplemented 

conditions, respectively. In addition, VEGF had no significant impact on total number 

cells counted, with mean cell number ± SEM: 86.7 ± 7.8 and 79.0 ± 7.8 for control 

(CTRL) and VEGF-supplemented conditions, respectively. 

 

Figure 29. Investigating G33 viability within fibrin gel. A) Cell density has no 

significant impact on G33 viability following 4-days culture. B) No significant difference 

in G33 viability is observed between culturing G33s in the presence of 50 ng/mL VEGF 

in EGM-2 culture medium. Green, calcein AM (live cells). Red, ethidium homodimer 

(dead cells). Statistics correspond to N=3. Scale bar: 200 µm. 
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Our results reveal G33 culture conditions are fairly robust, with no observed significant 

differences in cell viability across the conditions tested. In addition, G33s are suitable to 

culture with VEGF-supplemented EGM-2, alongside HUVECs. Interestingly, HGSOC 

cells were previously reported to have high-to-moderate expression of VEGFR-2 [280]. 

Spannuth et al report that the administration of a VEGFR-2 blocking antibody to mice 

injected with SKOV3ipl and A2774 cells, promoted cell apoptosis and decreased the 

proliferative index. Though SKOV3ipl cells are reported as ‘probably not HGSOC’ by 

Domcke et al, the importance of VEGFR-2 activity on cancer cell proliferation and 

survival is evident [181]. However, the VEGFR-2 expression profile of G33 cells is not 

currently known. The observed cell viability of G33s within this system is similar with 

other reported ‘high viability’ fibrin gel models, with reported cell viabilities between 71-

85% [185, 281]. 

 

10.3. Impact of G33s on short-term vessel formation 

As described in section 9 of this thesis, short-term vasculogenesis can be enhanced with 

the addition of stromal cells in parallel gel channels to the HUVECs. This is believed to 

be through the release of various growth factors, cytokines and signalling molecules - 

though the full nature of these interactions has not been elucidated in this thesis. Ovarian 

cancer cells are known to enhance vessel formation [282-284], this is to supply the 

proliferating ovarian cancer cells with nutrients and oxygen, and to remove waste 

products [60]. In addition, typical carcinomas are believed to metastasize through this 

tumour induced vasculature to a secondary site. 

The ability of HGSOC cells to promote short-term vessel formation was investigated. 

This assay used the same four-channel device discussed previously in Figure 20, with 
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HUVECs (6 × 106 HUVECs/mL) cultured in a gel channel, and either G33s (6 × 105 

G33s/mL) or an acellular fibrin gel in the opposing gel channel. Cells were cultured for 

4 days in the presence of EGM-2. As shown in Figure 30, co-culturing HUVECs with 

G33 cells significantly promoted vessel formation when compared with HUVEC mono-

cultures, with total tube lengths of 3.8 ± 0.9 and 1.5 ± 0.2 mm, respectively. 

 

Figure 30. Impact of G33s on short-term vessel formation. A) G33 paracrine 

signalling promotes a significant increase in vessel formation when compared with 

HUVEC mono-culture. B) Representative images. Green, CD31. Scale bar: 300 µm. 

Statistics correspond to N=3. 

 

In the literature, co-culturing endothelial cells alongside HGSOC cells, or treating with 

conditioned medium, promotes vessel formation and endothelial cell proliferation. A 
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study by Wan et al details the development of a novel co-culture system, involving the 

culturing of HUVECs and OVCAR8 ovarian cancer cells in Matrigel [282]. This system 

demonstrated that OVCAR8 clusters were able to maintain endothelial networks for 10 

days, whereas, significant vessel regression was observed in HUVEC mono-cultures 

following day 2. No quantification of total vessel formation was reported for the 2-day 

period when both systems promoted vasculogenesis, although the maintenance of 

networks in co-cultures suggests a positive impact of OVCAR8 cells on microvasculature 

stability. It was not reported why vessel regression was observed following 2-days 

culture. However, there is debate regarding the validity of some ovarian cancer cell lines, 

including OVCAR8, which was described as ‘possibly HGSOC’ due to some reported 

differences in the genome vs primary human HGSOC cells [181]. Another study by Li et 

al used a similar system in which they seeded HUVECs directly on growth factor-reduced 

Matrigel and were able to investigate ovarian cancer cell paracrine signalling [283]. Using 

this system, Li et al demonstrated that conditioned medium from PA-1 and SW626 

ovarian cancer cells promotes HUVEC tube formation, which is inhibited with the 

upregulation of SOX6. Al Thawadi et al proposed a novel mechanism of ovarian cancer 

induced angiogenesis [284]. They revealed endothelial cells cultured on Matrigel 

underwent angiogenesis following ovarian cancer derived microparticle treatment. 

Microparticles interacted with endothelial integrin subunits αV and β3, inducing β-cat 

dependent up-regulation of downstream Wnt/β-cat target genes, including VEGF and 

cyclin D1. These results are in good agreement with our observations that G33 ovarian 

cancer cells act to promote tube formation, which mimics the high micro-vessel density 

observed in poor prognosis epithelial ovarian cancer [89].  

Interestingly, Kaneko et al demonstrated Bcl-2, the apoptotic regulator, is significantly 

upregulated in endothelial cells associated with head and neck carcinoma, and when 
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down-regulated, a significant reduction in micro-vessel density is observed [285]. In 

addition, it has been further demonstrated that human dermal microvascular endothelial 

cells (HDMECs) over-expressing Bcl-2 show a significant increase in vessel sprouting, 

increased cell number and protection against apoptosis [275]. Furthermore, Bcl-2 protein 

expression was induced by the addition of VEGF to in vitro cultures. To further elucidate 

the role of G33s, or HGSOC cells, are having on HUVECs, further studies should be 

conducted investigating the evolution of cell densities, endothelial cell viability and the 

regulation of apoptosis.  

 

10.4. Impact of G33s on long-term vessel formation 

As shown in Figure 30, G33 cells promote vessel formation over a 4-day period. 

Following this, the impact of G33s on endothelial tube formation, up to 10 days, was 

assessed. These experiments used microfluidic devices with 1000 µm channel widths. 

To investigate the long-term impact of G33s on vasculogenesis, we compared mono-

cultured HUVECs with HUVECs co-cultured with G33s, with 6 × 106 HUVECs/mL and 

6 × 105 G33s/mL. Cells were cultured in four-channel devices, shown in Figure 20, with 

HUVECs and G33s cultured in separate, parallel gel channels. Cultures were maintained 

with 50 ng/mL VEGF supplemented EGM-2. As previously described, vessels grown in 

this system up to 10 days, undergo extensive vessel regression if they are not further 

supplemented with VEGF, independent to co-culture with stromal cells, thus a basal 

EGM-2 condition was not further investigated. As shown in Figure 31, no significant 

difference in total tube length (mm) is observed between groups, with total vessel length 

± SEM being 11.8 ± 1.9 and 12.2 ± 2.2 mm for HUVECs and HUVECs + G33s 

respectively. Furthermore, no significant difference in vessel diameter is observed when 
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co-culturing HUVECs with G33s, as compared with mono-cultured vessels, with vessel 

diameters of 94.9 ± 14.2 and 108.2 ± 16.4 m, respectively.  

 

Figure 31. Impact of G33s on long-term vessel formation. A) G33s have no significant 

impact on HUVEC tube formation. B) Additionally, no significant impact on vessel 

diameter was observed when HUVECs were co-cultured with G33s. C) Representative 

images. Red, CD31. Scale bar represents 300 µm. Statistics correspond to N=3. 

 

Within the context of this thesis it is unsurprising that G33 cancer cell paracrine signalling 

did not promote any increase in vessel formation, as supplementing cultures with 50 

ng/mL VEGF appears to promote optimal vasculogenesis. This was also demonstrated in 

Figure 21 and 22, with NHLF and pericyte paracrine signalling having no significant 

impact on vessel formation, when compared with monocultures supplemented with 

VEGF. The impact of cancer cells on vessel morphology was examined in a microfluidic 
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co-culture model of breast cancer and endothelial cells [214]. In this study HUVECs were 

co-cultured with two commonly used breast cancer cell lines, MCF7 and MDA-MB-231, 

with the latter being recognised as having a particularly metastatic and invasive 

phenotype. When co-culturing with MDA-MB-231 cells, a significant reduction in vessel 

diameter was observed, however a similar result was not observed when culturing with 

MCF7 cells. The mechanism behind this was not further investigated, however, citing the 

work by Watson et al [286], the authors concluded that this reduction in vessel diameter 

could be due to increased endothelial apoptosis - though this was not further elucidated. 

However, G33s had no significant impact on vessel diameter in our study. 

 

10.5. Impact of HUVECs on G33 proliferation and morphology 

Following the characterisation of G33s on HUVEC vascularisation, the impact of 

HUVECs on G33 phenotype was investigated. Specifically, the impact of HUVECs on 

G33 cell number, cluster size and cluster circularity was studied. Culture conditions were 

the same as reported when investigating the role of G33s on HUVEC tube formation at 

day 10, though the impact of EGM-2 basal medium was also further studied. 

Representative images of these samples are shown in Figure 32, which clearly depict 

morphological differences in G33 cells when HUVECs are present. However, the impact 

of VEGF on G33s is less pronounced, if any. 

As observed in Figure 32, HUVECs appear to increase the number of G33s. Indeed, 

quantification confirmed that the number of G33s increased when co-cultured with 

HUVECs, from 77.0 ± 11.4 and 66.7 ± 18.3 cells/mm2, for EGM-2 and VEGF-

supplemented monocultures, to 112.9 ± 21.6 and 133.6 ± 15.4 cells/mm2 for EGM-2 and 

VEGF-supplemented co-cultures, respectively (Figure 33). VEGF had no significant 
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impact on G33 cell number, suggesting the observed increase in G33 number with the 

addition of HUVEC is through a VEGF independent pathway of cell proliferation, or 

inhibition of G33 apoptosis. In addition to the observed increase overall G33 cell densities 

in co-cultures, there is a significant increase in G33 cell clusters (cell clusters being 

defined as 2+ cells). The total number of cell clusters increased from 8.6 ± 1.1 and 6.2 ± 

0.5 clusters/mm2, for EGM-2 and VEGF-supplemented monocultures, to 15.1 ± 2.7 and 

14.5 ± 2.5 clusters/mm2, for EGM-2 and VEGF-supplemented co-cultures, respectively. 

Interestingly, whereas there was no significant difference in the number of small clusters, 

the number of large cell clusters (containing at least 5 cells) was significantly increased 

(Figure 33).  

 

Figure 32. G33s co-cultured with HUVECs. Representative images of G33s when 

cultured with HUVECs or separately. When cultured with HUVECs G33 cells appear to 

grow into larger clusters. In addition, cells appear as more irregular and less rounded. 

Green, CD31. Red, F-actin. Blue, DAPI. Scale bars are 300 µm. 



123 
 

As well as increasing the number of G33 cells through an increase in cell clusters, Figure 

32 also indicates a morphological change in G33s in co-cultures with HUVECs. This was 

further analysed in Figure 34, in which cluster circularity and area are quantified - perfect 

circularity corresponds to a value of 1. Interestingly, HUVECs promoted a less circular 

phenotype in G33 clusters, with circularity decreasing to 0.3 ± 0.1 and 0.2 ± 0.0 in co-

cultures in EGM-2 and VEGF-supplemented media, respectively. In addition, the average 

area of G33 clusters was found to increase in co-cultures, which is unsurprising 

considering that HUVECs promote the formation of large (5+ cells) G33 clusters.  

Furthermore, correlations of area and circularity indicated that larger clusters displayed 

the most irregular shapes, consistent with the high number of protrusions displayed by 

these aggregates. Analysis of these parameters using the Pearson correlation coefficient 

confirmed a significant negative correlation between these values, shown in Figure 34. 

This suggests that as G33 clusters become larger they concomitantly become less circular. 

The addition of VEGF in the medium had little impact on cluster size or shape. These 

results suggest that HUVECs promote G33 proliferation and/or survival, concurrently 

promoting a phenotypic change.  

Endothelial cells are typically regarded to have an impact on the tumour 

microenvironment, via the formation of vessels that deliver nutrients and constitute 

“highways” for metastasis. Though these are important mechanisms for tumour growth 

there is a growing body of evidence that demonstrates endothelial cells actively signal to 

tumour cells, promoting a change in behaviour [287]. This paracrine signalling, though 

not well-studied in ovarian cancer, has been better evidenced in other cancers such as 

head and neck squamous carcinoma [288]. Endothelial derived chemokine (C-X-C motif) 

ligand 1 (CXCL1) and CXCL8 was shown to be an important mediator of tumour cell 

motility and invasion via activation of the CXC receptor 2 (CXCR2). Interestingly, the 
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addition of VEGF, and Bcl-2 over-expression, promotes downstream activation of NFκB, 

which increases CXCL1 and CXCL8 expression in endothelial cells [289]. However, we 

observe no difference in cancer cell number and morphology with the addition of VEGF, 

which may imply that there is a different axis responsible for the increased number and 

morphology change of G33 cells that we observe. 

 

Figure 33. Impact of HUVECs on G33 cell number. A) HUVECs significantly promote 

the number of G33s/mm2. B) In addition, HUVECs significantly increased the number of 

G33 cell clusters. C) However, HUVECs had no significant impact on the number of 

small G33 clusters, defined as 2-4 cell, with mean number of small cluster/mm2 ranging 

from 5.0-7.4. D) But, HUVECs do promote the formation of large clusters (defined as 5-

15+ cells) - increasing from 1.5 ± 0.3 and 0.9 ± 0.9 clusters/mm2 for EGM-2 and VEGF-

supplemented mono-cultures, to 8.0 ± 0.5 and 9.2 + 1.2 clusters/mm2 for EGM-2 and 

VEGF-supplemented co-cultures. Statistics corresponds to N=3. 

 

G33 clusters becoming more irregular may indicate they are undergoing EMT. This is in 

agreement with what is reported within the literature, as epithelial cells are regarded to 

have a ‘cobblestone’ appearance, becoming more elongated when transitioning to a 
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mesenchymal phenotype - as observed in MDCK cells - a commonly used epithelial cell 

line [290]. However, to further confirm that HUVECs are promoting this EMT 

phenotype, further characterisation will have to be carried out. Commonly associated 

hallmarks of EMT are loss in epithelial markers, such as E-cadherin, and gain in 

mesenchymal markers, such as vimentin [291, 292]. These are both widely used markers 

and would be suitable to further investigate the potential loss in epithelial function of 

G33s, when co-cultured with HUVECs [293, 294]. In addition, further in vitro 

experiments using HUVEC conditioned medium to culture 2D G33 cells, may allow the 

visualisation of HUVEC induced EMT via paracrine signalling. Furthermore, seeding 

HUVECs and G33s in the same channel will also allow studying of endothelial and 

HGSOC cell juxtacrine signalling. 
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Figure 34. Impact of HUVECs on G33 circularity and perimeter. A) When co-

cultured with HUVECs, G33 cell clusters become significantly less circular and more 

irregular in shape. B) Concurrently, they become much larger, occupying an area of 6.11 

± 0.7 ×103 and 7.4 ± 1.1 ×103 µm2 when cultured with EGM-2 and VEGF, respectively, 

compared with 2.1 ± 0.2 ×103 and 2.2 ± 0.5 ×103 µm for mono-cultures supplemented 

with EGM-2 or VEGF, respectively. C) Furthermore, using the Pearson correlation 

coefficient to correlate cluster circularity with size reveals an r value of -0.51. 

Demonstrating that as G33 clusters become larger they concurrently become less circular. 

Statistics correspond to N=3. 

 

 

10.6. Summary 

This section studied the paracrine interactions between HUVECs and G33 HGSOC cells. 

G33 cells were shown to promote HUVEC vessel formation following 4 days when 
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cultured with basal EGM-2, via paracrine signalling. However, when cultured for 10 days 

with VEGF supplemented EGM-2, no statistical differences were observed in vessel 

formation and diameter between HUVEC and G33 co-cultures and HUVEC mono-

cultures. Interestingly, HUVECs were shown to significantly impact G33 cells through 

paracrine signalling. This has not previously been demonstrated using microfluidics and 

such interactions have not been evidenced in the context of ovarian cancer. But as shown, 

when co-cultured with HUVECs, G33 numbers are significantly increased through either 

increased proliferation or improved survival. In addition, G33 clusters are more irregular 

when co-cultured with HUVECs, which is suggestive of an EMT phenotype - though 

further experiments are required to confirm this observation. The next stage of this thesis 

will be focus on developing a novel spheroid-on-a-chip system that will allow the 

integration of a cancer spheroid within a vascularised spheroid gel, this will then undergo 

chemotherapy treatment to observe how HUVECs impact drug response. 
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11. Development of ovarian cancer spheroids on-a-

chip 

 

11.1. Introduction 

HUVEC-G33 paracrine signalling was investigated using a four-channel PDMS device 

(see Figure 20). Though this better mimics the in vivo environment compared with 

culturing cells in 2D, this system still does not fully recapitulate cell-cell bonding 

experienced in vivo due to the dispersed nature of cell seeding [295]. Due to the limited 

size of G33 cell clusters, gradients of oxygen, nutrients and waste do not develop. These 

are important contributors to the formation of a hypoxia environment - known to be 

important regulator of HGSOC chemo-resistance [296-298]. Cancer spheroids, compared 

with dispersed culture, are recognised as being more physiologically relevant when 

recapitulating the tumour microenvironment [295, 299]. This is due to spheroids 

promoting extensive cell-cell interactions and cell-matrix interactions, which influences 

drug response [295]. In addition, tumour spheroids larger than 400-600 µm diameter, 

allow the development of oxygen, nutrient and waste gradients. This in turn promotes an 

architectural change in which the outer 100-300 µm cells are proliferative and viable, 

surrounding a necrotic, hypoxic core [300]. It is recognised that the hypoxic core of 

spheroids plays an important role in drug resistance, particularly therapies which target 

rapidly proliferating cells [295, 301]. 

Nashimoto et al developed a microfluidic device that allowed the embedding of a lung 

fibroblast spheroid within a fibrin gel [216]. Their system incorporated three parallel 

channels, a central gel/spheroid channel and two lateral medium channels. To seed their 

device, they first injected the central channel with a fibrin gel embedded with a NHLF 
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spheroid. Following this, HUVECs suspended in EGM-2 medium were added to the 

lateral side-compartments and the device tilted at 90 ° for 30 min to allow cells to adhere 

to fibrin gel. This allowed HUVECs, over a period up to 14-days, to invade through the 

fibrin gel towards the spheroid, allowing them to perfuse solutions, including labelled-

dextran and microbeads, through the vasculature and into the spheroid. Interestingly, 

MCF7 breast cancer spheroids were tested but did not promote angiogenesis in this 

system. We designed a similar system, combining the advantages of spheroid and organ-

on-a-chip culture. This system incorporates a cancer spheroid embedded within a fibrin 

gel seeded with HUVECs, and will use the vascular system designed in this thesis to 

deliver chemotherapeutic agents to the cancer spheroid. 

 

11.2. Microfluidic device design 

The microfluidic device design initially used to investigate interactions between 

HUVECs and a G33 spheroid is shown in Figure 35. This design, as stated, is inspired by 

Nashimoto et al [216], though with some key differences. Firstly, Nashimoto used a three-

channel device, whereas this device incorporates five channels, including additional 

lateral vascular compartments (LC and RC). Secondly, our system embeds HUVECs 

within fibrin gels injected into the vascular channels (LC and RC), whereas Nashimoto 

seeds HUVECs on the outer-sides of the central channel. This design difference was 

partly due to our previous work focusing on developing a vasculogenic approach to cell 

seeding, whereas little work has focused on an angiogenic approach, which may require 

different conditions. In addition, this design allows the incorporation of different pre-

metastatic niches within the same device, allowing the study of metastasis.    
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Figure 35. Design of five-channel spheroid chip. A) Schematic representation of the 

spheroid device. This system has two lateral medium channels (LM and RM), two lateral 

gel channels (LC and RC), and a central spheroid channel. Each channel is 75 µm in 

height, the LM, RM, LC and RC channels are 1000 µm in width and the central channel 

is 2000 µm in width. B) Depicts the cross-section of the device. Spheroids are injected 

into the central gel channel, through the central well, and HUVECs injected into lateral 

gel channels LC and RC - and allowed to undergo angiogenesis towards spheroid. 

Schematics are not to scale. 
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11.3. Methods for creating spheroids 

A method for creating reproducible spheroids, to be seeded in microfluidic devices, was 

established. Many protocols exist for spheroid formation, these typically encourage cell-

cell bonding, rather than cell-substrate bonding, which is commonly observed in 2D 

culture. Coating plasticware with non-adhesive compounds, such as poly-HEMA, inhibits 

cell adhesion to the underlying substrate and encourages spheroid formation [299, 302]. 

The hanging drop method is another commonly used spheroid formation technique [303]. 

As the name would suggest, cells are seeded from a hanging drop, typically on the 

underside of the lid of cell culture plasticware. As there is no underlying substrate, when 

using the hanging drop method, cell-cell adhesion is encouraged. 

Different techniques for forming spheroids were investigated. U-bottomed 96 well plates 

were coated with poly-HEMA (2% w/v solution, 95% ethanol solvent) for 10 min, before 

the solution was aspirated, and plates dried at RT for 1 h, before washing with DPBS.  5 

× 103 and 2 × 104 G33 cells were seeded in poly-HEMA coated U-bottomed 96 well plates 

and cultured for 48 h before imaging. Poly-HEMA coating damages the surface of the 

substrate, making visualisation and imaging challenging (see Figure 36). In addition, 

poly-HEMA coating appears to promote the formation of multiple small clusters, but not 

a single large spheroid. The hanging drop method of spheroid formation was also 

evaluated. We seeded 5 × 103 and 1 × 104 G33s in 20 µl and 40 µl droplets, respectively. 

This technique allowed the establishment of loosely formed spheroids, with clear gaps 

between cells - particularly in 5 × 103 G33 spheroids (see Figure 36). In addition, 

replacing medium in this technique is challenging due to interference with the nascent 

spheroids. Due to the difficulties with the poly-HEMA and hanging drop methods, 96-

well clear ultra-low attachment well plates were used to form spheroids. As shown in 

Figure 36, these plates allowed the establishment of well-formed 5 × 103 and 2 × 104 G33 
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spheroids. These spheroids were stable and able to be handled using a pipette, which is 

essential when embedding in a fibrinogen gel. This technique is further described in the 

Materials and Methods section of this thesis (p. 56). 

 

Figure 36. Establishing spheroid seeding method. A) Spheroids grown in poly-HEMA 

coated wells do not establish well structure vessels. In addition, the poly-HEMA solution 

damages the surface of the well, making visualisation and imaging difficult. B) The 

hanging drop method does not form well-structured spheroids, with gaps observed in the 

structure (arrows). C) Culturing G33 cells in 96-well clear ultra-low attachment well 

plates allow the formation of stable spheroids. Scale bar: 100 µm. 
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Nashimoto et al describes forming vascularised spheroids using a combination of lung 

fibroblasts and HUVECs, allowing the vascular network to perfuse through the spheroid 

[216]. We replicated this in G33 spheroids, using a 4:1 ratio of G33-to-HUVECs, thus 2 

× 104 G33s and 5 × 103 HUVECs were seeded per well in the aforementioned 96-well 

plates, these spheroids are referred to as micro-tumours (MCT). Following 72 h culture 

in EGM-2, MCTs were removed and embedded within fibrinogen gels and injected into 

PDMS devices and cultured for a further 10 days (see Figure 37). These MCTs form clear 

spheroid structures, with a visible vasculature around the periphery. In addition, G33 cells 

adhere to the underlying glass substrate and migrate from the bulk spheroid. Interestingly, 

G33s appear to migrate along a boundary with a clear outer ring of cells, suggesting they 

are degrading the fibrinogen gel - though this needs to be confirmed. 

As seen in Figure 37, an issue with diffusion gradients of staining reagents is observed, 

as particular stains (phalloidin) show a clear ring structure as the stain has failed to diffuse 

into the centre of the MCT, however another stain (DAPI) has clearly diffused and stained 

throughout the spheroid. This problem is likely the result of high cell density and staining 

agents unable to diffuse to the centre of the MCT. Increasing the exposure time of 

permeabilization and staining reagents may resolve this issue. In addition, developing a 

method to remove the MCT from the chip will allow researchers to perform 

immunohistochemistry on the sample, which will provide further structural analysis on 

the MCT interior. Nashimoto et al spin coats a 100 µm thick PDMS layer onto a glass 

substrate, before curing, and bonding to the micropatterned PDMS stamp using oxygen 

plasma treatment - this allows spheroid retrieval from the device using a biopsy punch 

[216]. 
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Figure 37. Culturing micro-tumour spheroids. G33s and HUVECs were cultured in 96 

well-plates for 72 h, before embedding within fibrinogen gel and cultured for a further 10 

days in a microfluidic device. As shown, these MCTs form clear spheroid structures with 

vasculature around the periphery. Red, Phalloidin. Green, CD31. Blue, Dapi. Scale bar: 

300 µm. 

 

11.4. Spheroid angiogenesis in five-channel devices 

A method for injecting MCTs into devices five-channel spheroid devices was developed, 

following the establishment of the MCT formation protocol. Firstly, the vascular 

compartments (LC and RC) were injected with a 10 mg/mL fibrin gel embedded with 6 

× 106 HUVECs/mL before gel curing, VEGF-supplemented medium was then added to 

the lateral medium channels (LM and RM) and the device incubated for 1 hr at 37 °C. An 

MCT spheroid was then embedded within a fibrin gel and injected into the central channel 
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(C), forming an interface with the parallel vascular compartments. The end-point of these 

experiments was day 10.  

 

Figure 38. HUVEC angiogenesis in five-channel spheroid device. Two separate 

repeats, with the same conditions are presented (samples A and B), with HUVECs co-

cultured with MCT spheroids. In sample A, the vasculature has invaded into the central 

gel channel; arrows indicate post location. In sample B, the CD31 staining indicates the 

sprouting and migration of endothelial cells to the MCT spheroid (see arrow). Red, 

phalloidin. Green, CD31. Scale bar: 300 µm. 

 

This method for developing vascularised spheroids had mixed success. As shown in 

Figure 38, HUVECs initially underwent vasculogenesis within their respective 

compartments, followed by angiogenesis towards the MCT spheroid (as evidenced by the 

crossing of the post delimitation of the channel within which endothelial cells were 

initially seeded). Concurrently, the HUVECs within the MCT formed vessels which 

projected outwards. However, in the multiple repeats of this experiment HUVEC vessels 

were not found to perfuse through the MCT spheroid, failing to connect the vasculatures 
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in the LC and RC channels. Without this perfused system drugs would be unable to be 

delivered to the MCT through the vasculature. 

The system used in this thesis cultures cells for a total of 10 days in the microfluidic 

device, compared with 14 days culture reported by Nashimoto et al [216]. If these 

experiments were extended to > 14 days, further vessel formation may be observed, 

however extensive vessel hyperplasia may then become an issue. This could be resolved 

with co-culturing HUVECs with pericytes, as reported in Figure 24 of this thesis. 

However, HUVEC angiogenesis into the central channel, as well as being inadequate, 

was also unreliable with some repeats showing little signs of angiogenesis. Thus, 

extending culturing time may not be suitable. In addition, MCF7 cells were shown not to 

promote HUVEC angiogenesis into the central compartment by Nashimoto - though the 

reason behind this was not further elucidated [216]. Highlighting, that perhaps not all cell 

types are suitable to promote sufficient angiogenesis to allow MCT vascularisation. 

Perhaps other ovarian cancer cell types would be more suitable, but this then questions 

the relevance of this model to a broad range of tumours and its patient specificity. An 

alternative chip design and seeding strategy was then established which uses a simpler 

three-channel spheroid chip and embeds the MCT spheroid directly together with 

HUVECs.  

 

11.5. Spheroid three-channel device design 

Due to the difficulties in culturing reproducible, vascularised MCTs using the five-

channel chips, we developed a three-channel spheroid device (see Figure 39). This device 

incorporates 3 parallel channels: a central gel channel, and two lateral medium channels, 

separated by hexagonal posts. This device allows HUVEC vascularisation within the 
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same channel as the MCT, encouraging spheroid perfusion and drug delivery. However, 

unlike the five-channel device, this design will not allow the study of different pre-

metastatic niches and will not allow quantification of angiogenesis directionality, as 

described by Nashimoto [216].  

 

Figure 39. Design of three-channel spheroid chips. This device was designed to allow 

the seeding of HUVECs and MCTs in the same central chamber. A) Two lateral medium 

channels, LM and RM, delimitate a central gel channel (C, 2000 µm width, 75 µm in 

height), with posts (300 µm in length with 75 µm gaps) enabling the retention of fibrin 

gels in C. B) Cross section of device. HUVECs and spheroids embedded in the same 

fibrin gel. Schematics are not to scale. 

 

11.6. Spheroid vasculogenesis in three-channel device 

The five-channel device was unsuitable for drug delivery studies, as the MCT remained 

non-vascularised following 10-days culture. To address this, HUVECs were directly 
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embedded within the fibrin gel alongside the MCT. HUVECs were expected to 

vascularise around and through the spheroid, allowing drug delivery through the vascular 

network. A similar system has since been adopted by Kamm et al, who seed neural 

spheroids alongside endothelial cells in a 3D gel [304].  

 

Figure 40. Spheroid vasculogenesis. An MCT spheroid can be observed, completely 

surrounded by microvasculature, with vessels being shown to permeate through the 

spheroid. A) Shows two separate Z-planes of the same MCT spheroid. Arrows in both the 

lower and higher plane highlights the CD31 stained vasculature infiltrating through the 

spheroid. B) Shows the complete vascularised MCT Z-stack. Red, phalloidin. Blue, 

DAPI. Green, CD31. Scale bar: 300 µm.  
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A method was next established for co-injecting MCT spheroids and HUVECs into three-

channel devices. The technique for creating the MCT was identical to what has previously 

been reported in this thesis, with 8 × 106 HUVECs/mL seeded alongside the MCT. 8 × 

106 HUVECs/mL was used in this experiment instead of 6 × 106 HUVECs/mL due to 

difficulties in isolating the MCTs. HUVECs were first re-suspended in a thrombin 

solution, before MCTs were isolated and mixed with 10 µL of the HUVEC-thrombin 

solution. Due to additional solution being added to the HUVEC-thrombin solution, the 

density of HUVECs was diluted and less vessel formation was observed (data not shown). 

To compensate for this, we used an initial higher concentration of HUVECs. Following 

re-suspension of the MCT in the HUVEC-thrombin solution, we mixed with fibrinogen 

and injected into the well of the central channel. Gels are then cured in a 37 °C incubator 

for 5 min before VEGF-supplemented EGM-2 was added to the lateral medium channels. 

Cultures were maintained for 10 days. 

HUVECs undergo extensive vasculogenesis when cultured in the same channel as the 

MCT, see Figure 40. Analysis of the individual Z-planes of the confocal image revealed 

that the vasculature infiltrates throughout the MCT - suggesting this system may be 

suitable to introduce drugs into the MCT via the vasculature. In addition, vascularised 

MCTs appear to form hollow structures, with cells appearing to migrate away from the 

spheroid centre.  

 

11.7. Functional perfusion of the vasculature through micro-tumours  

Vessel perfusion was investigated following the establishment of the MCT injection 

method. This would establish whether the MCTs are vascularised and will allow the 

delivery of drugs and/or cells through the vasculature to the cancer spheroid. This was 
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investigated using a method further described in the Materials and Methods section (p. 

60). Briefly, 70 kDa FITC-dextran is perfused through the vasculature, followed by 

qualitative analysis of intra- to extravascular leakage between T=0 and T=30 min. 

  

Figure 41. FITC-dextran perfusion through spheroids. 70kDa FITC-dextran was 

added to one of the medium channels of the device and allowed to perfuse through the 

network. The spheroid is outlined with a white dashed line, which was plotted according 

to initial background given by spheroid. White arrows indicate internal lumenised vessels 

embedded within the spheroid. The device was imaged for 30 min. Green, 70 kDa FITC-

dextran. Scale bar: 100 µm. 

 

Using FITC-dextran, we were able to visualise the perfusion of the vasculature through 

the MCT, similarly to what has previously been reported [216]. Interestingly, the spheroid 

appears not vascularised in the centre, rather it contains large lumenised structures at its 

periphery (see white arrows), this is similar to what is reported by Nashimoto et al. 

However, they also reported the formation of small lumenised vessels in the centre of the 

spheroid, which was not observed within this sample. However, similar structures are 

observed later in Figure 43, suggesting some issues with reproducibility. In addition, 

though FITC-dextran can be observed diffusing through the same X and Y plane as the 

spheroid, it does not ensure, in this experiment, that FITC-dextran is diffusing through 

the actual spheroid. As the spheroid may be found in a higher Z-plane than the underlying 
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vasculature. However, Figure 40 demonstrates that these spheroids can be vascularised 

throughout, implying we are observing FITC-dextran perfusion through the spheroid. 

Furthermore, the increased intensity of FITC-dextran within the spheroid at T=30 may be 

a result of vessel leakage within the spheroid, leading to dextran accumulation. These 

spheroids also have multiple layers of vasculature, as shown by Figure 40, this increased 

intensity could be dye perfusion in other Z-planes. Following the conclusion that these 

spheroid-on-a-chip models are perfusable, the next aim was to investigate the impact of 

the vasculature on drug delivery. 

 

11.8. G33 response to carboplatin 

Carboplatin is a second-generation platinum therapy and derivative of cisplatin which is 

commonly used in conjunction with paclitaxel as a first-line therapy in ovarian cancer 

[71]. The mechanism behind carboplatin’s action is discussed further in the introduction 

(p. 23). Briefly, carboplatin acts by forming mono- and di-adducts with DNA, inhibiting 

cell replication and transcription, and inducing apoptosis [305]. Due to carboplatin’s 

ubiquity as a chemotherapeutic in epithelial ovarian cancer therapy, we selected it to 

further investigate this system. 

Prior to treating vascularised MCTs, we investigated carboplatin’s IC50 with G33 cells 

cultured in 2D, 3D, and 3D spheroids. This was to ensure an appropriate carboplatin 

treatment was investigated. Rather than determining carboplatin’s IC50 through directly 

measuring cell death, its impact on cell metabolism was instead measured using the CCK-

8 assay (more information is provided in the Materials and Methods section, p. 58), which 

is a colorimetric assay commonly used to evaluate cell viabilities [306, 307]. To ensure 

these results are comparable with vascularised MCTs, 2 × 104 G33s per condition were 
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examined. Accordingly, 2 × 104 G33s per well (6 well plate) used to investigate 2D, 2 × 

104 G33s per 40 µL fibrin gel to investigate 3D culture, and 2 × 104 G33 spheroids in 40 

µL fibrin gel to investigate 3D spheroids. Samples were cultured for 24 h in EGM-2 

supplemented with 50 ng/mL VEGF, before treatment with carboplatin with cell viability 

evaluated 24, 48 and 72 h post carboplatin treatment. Concentrations between 0-5000 µM 

were investigated according to data previously obtained by Dr Owen Heath (not currently 

published).   

Carboplatin treatment consistently promoted a loss in cell viability, with the mean IC50 

for each time-point and condition indicated in Figure 42. Our recorded IC50 values 

following 72 h culture were in range of the IC50 values of 32 commonly used ovarian 

cancer cell lines reported by Bicaku - between 27 - 247 µM [308]. Interestingly, across 

all time-points G33s cultured in 2D have a higher IC50 than cells cultured in 3D. This is 

unexpected as 3D culture is typically considered to promote a chemo-resistant phenotype 

and genotype in ovarian cancer [301, 309, 310]. Hypoxia plays an important role in 

chemo-resistance in ovarian cancer, and resistance to cisplatin and it’s derivatives [295, 

301, 311-313]. An interesting study by Selvendiran et al details how hypoxia significantly 

increases phosphorylation and activation of STAT3 in A2780 ovarian cancer cells. They 

went on to show that taxol and cisplatin are significantly less effective at eradicating 

A2780 cells in hypoxic conditions, however, this is reversed following the inhibition of 

STAT3 [313]. As stated in the introduction of this section, spheroids with diameters 

greater than 400-600 µm allow the development of a hypoxic core due to diffusion 

gradients [300]. The mean Feret diameter and minimum Feret diameter of spheroids 

examined in Figure 42 at day 0 was 529.0 and 424.8 µm, respectively (N=1, 

quadruplicate). These samples were therefore large enough to feature a hypoxic core 

(though this was not confirmed), as such, it was expected that carboplatin’s IC50 would 
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be higher in 3D cultures compared with 2D. In addition, altered cell-cell and cell-matrix 

interactions in spheroid cultures compared with 2D culture has also been suggested to 

play a role in differing drug response, through changes in protein and RNA expression 

[295].  

 

Carboplatin therapy, mean IC50 values (µM) 

Conditions Time-point (h) 

 24 48 72 

2D 228 525 141 

3D 189 217 101 

Spheroid 198 151 67 

 

Figure 42. Impact of carboplatin treatment on G33 viability. Six different 

concentrations of carboplatin were investigated (0, 10, 100, 500, 1000 and 5000 µM) on 

2 × 104 G33s in 2D (A), dispersed in fibrin gel (B) and spheroid in fibrin gel (C). D) Mean 

IC50 values (µM). CP = carboplatin. Statistics correspond >N3. 

 

D 
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The CCK-8 assay uses WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4- 

disulfophenyl)-2H-tetrazolium, monosodium salt] which is reduced by cellular 

dehydrogenases to produce WST-8 formazan, an orange dye, to indicate cell metabolism 

and viability. When culturing G33s in 2D, the supernatant is easily collected and 

analysed, however, when culturing cells in fibrin, the WST-8 formazan dye stains the 

fibrin gel. This loss in WST-8 formazan may artificially reduce the recorded metabolic 

activity levels of cells cultured in fibrin. Indeed, when comparing the raw data, a 10-fold 

difference in the mean absorbance value, of WST-8 formazan, is observed when 

comparing G33 cells cultured in 2D vs spheroids (0.72 and 0.07, respectively), at day 1 

in EGM-2. These experiments were not conducted in parallel, thus, statistical analysis is 

unsuitable. However, a clear reduction in WST-8 formazan is observed when culturing 

G33s in spheroids. This could be related to the observed staining of the fibrin gel, or 

reduction in G33 metabolism. WST-8 formazan production is dependent upon the activity 

of cellular dehydrogenases. As discussed, cells cultured within a spheroid have a spatial 

relationship with activity [300]. Thus, quiescent cells within the hypoxic region of the 

spheroid may, though not dead, not be active, and therefore not recorded by the CCK-8 

assay. Further experiments would need to be conducted to confirm this with 

LIVE/DEADTM imaging or flow cytometry. 

 

11.9. Vascularised micro-tumour response to carboplatin 

Following the development of the spheroids-on-a-chip, and the experiments to study G33 

response to carboplatin, the next stage was to combine these and assess the response of 

vascularised MCTs to carboplatin.   



145 
 

As shown in Figure 42, a concentration of approximately 150 µM carboplatin is required 

to elicit an IC50 response in G33 spheroids after 48 h. This concentration was used to 

treat vascularised MCTs after 8-days culture for 48 h (endpoint day 10). Vascularised 

MCTs were generated using the protocol described in section 11.6. In addition, the 

response of non-vascularised MCTs on-a-chip to carboplatin was also examined.  

 

Figure 43. Response of micro-tumours to 150 µM carboplatin. The response of non-

vascularised and vascularised MCTs to 150 µM carboplatin was examined. Carboplatin 

treatment was for the final 48 h. Total culture time 10 days. Representative images. Red, 

phalloidin. Green, CD31. Blue, DAPI. Scale bar: 300 µm. CP = carboplatin. Images 

represent N=1. 
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These preliminary experiments suggest that culturing MCT spheroids alongside HUVECs 

promotes a clear phenotypic change, when compared with MCT cultured separately. As 

shown in Figure 43, vascularised MCTs form a large spheroid body (area=0.95 mm2), 

with many protrusions (circularity=0.039) (results represent N=1). Whereas, non-

vascularised MCTs cover a smaller area (0.63 mm2) and are also more circular (0.12). In 

addition, non-vascularised MCTs feature many G33 cells which have adhered to the 

underlying glass substrate and migrated from the main body. These 2D cells could be 

indicative that the MCT has significantly degraded the surrounding fibrin gel - perhaps 

suggesting that HUVECs are stabilising the fibrin ECM. Treating samples with 150 µM 

carboplatin had little impact on these parameters. Furthermore, non-vascularised MCTs 

display cell shrinking when cultured with 150 µM carboplatin, which is not observed in 

vascularised MCTs - these are recognised hallmarks of apoptosis [314]. This could 

suggest a protective effect from chemotherapy by HUVECs, perhaps as a result of the 

increased total cell mass involved in the vascularised models. In addition, 150 µM 

carboplatin treatment did not seem to have a significant impact on vascular coverage 

compared with VEGF control, with total tube lengths of 14.5 and 16.5 mm (N=1), 

respectively.  

To more conclusively observe the response of MCTs to chemotherapy, the carboplatin 

concentration was increased from 150 to 300 µM. Similar to what is observed in Figure 

43, vascularised MCTs form large bodies with many protrusions, whereas, non-

vascularised MCTs form smaller bodies, with G33s adhering to the underlying glass 

substrate (Figure 44). Carboplatin treatment promoted significant vessel regression, 

leading to a loss in total tube length in vascularised MCTs, 12.3 ± 1.0 and 17.7 ± 1.3 mm, 

respectively. In addition, culturing MCTs alongside HUVECs appears to promote the 

formation of larger MCTs, with more protrusions. Indeed, analysis of area coverage 
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revealed vascularised MCTs formed significantly larger spheroids when compared with 

non-vascularised MCTs (0.85 ± 0.11 and 0.33 ± 0.05 mm2, respectively) (see Figure 45). 

However, carboplatin had no significant impact on MCT area coverage. Furthermore, 

HUVECs promoted a phenotypic change in MCTs; as analysis of the MCT shape revealed 

vascularised MCTs to be significantly less circular than non-vascularised MCTs, 0.06 ± 

0.01 and 0.22 ± 0.01, respectively. Carboplatin treatment also promoted a less circular 

phenotype in non-vascularised MCTs compared with control treated (0.16 ± 0.02).  

 

Figure 44. Images of MCTs response to 300 µM carboplatin. The response of non-

vascularised and vascularised MCTs to 300 µM carboplatin was examined. Carboplatin 

treatment was for the final 48 h. Total culture time 10 days. Representative images. Red, 

phalloidin. Yellow and green, CD31. Blue, DAPI. Scale bar: 300 µm. CP = carboplatin. 

Images represent N=3. 
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Carboplatin treatment of non-vascularised MCTs promoted extensive G33 cell shrinkage 

(see Figure 46). The reduced circularity observed in non-vascularised MCTs following 

carboplatin treatment may be a result of this increased cell shrinkage and breakdown of 

the MCT. Extensive cellular shrinkage is not observed when MCTs are cultured alongside 

HUVECs. In addition, non-vascularised and vascularised MCTs display clear Ki67 

staining, indicating cells are viable and continuing to proliferate following 10-days 

culture (Figure 46). However, following carboplatin treatment, this is completely ablated 

in non-vascularised MCTs and reduced in vascularised MCTs. These preliminary 

findings suggest that HUVECs are chemo-protective when cultured with G33 cells. 

However, further experiments need to confirm these observations.  

 

Figure 45. Micro-tumours response to 300 µM carboplatin. The response of non-

vascularised and vascularised MCTs to 300 µM carboplatin. Carboplatin treatment was 

for the final 48 h. Total culture time 10 days. A) HUVECs significantly promoted the area 

coverage of MCTs, carboplatin had no impact. B) Vascularised MCTs were significantly 

less circular compared with non-vascularised, also carboplatin treatment reduced non-

vascularised MCT circularity. C) Carboplatin treatment significantly reduced total tube 

length. Statistics correspond to N=3. 
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Vascularised MCTs enable paracrine and juxtacrine signalling between HUVECs and 

G33 HGSOC cells. Similar to what we report in Figure 33, culturing MCTs alongside 

HUVECs promotes the formation of larger spheroids, suggesting HUVECs are promoting 

G33 proliferation. This is comparable to what is reported by Hoarau-Véchot et al, who 

demonstrated that when ovarian cancer cells are directly co-cultured with endothelial 

cells they observe significantly enhanced proliferation [61]. This was further confirmed 

in vivo, with endothelial cells significantly increasing HGSOC tumour size. In addition, 

HGSOC cells were more chemo-resistant, to cisplatin and taxol treatment, when co-

cultured with endothelials cells, compared with HGSOC mono-cultures. These responses 

were related to Jagged1-Notch3 interactions between endothelial-HGSOC cells, 

respectively. This axis led to the downstream activation of various signalling pathways, 

including the PI3K/Akt/mTOR signalling cascade, which is linked with proliferation and 

chemo-resistance [315]. Indeed, transfecting ovarian surface epithelium cells to over-

express the Notch3 intracellular domain promoted carboplatin resistance, and knock-

down of Notch3 in OVCAR3 cells increases sensitivity to carboplatin [316]. Notch3 

signalling is mutated in 11% of all HGSOCs, with over-expression linked with poor 

prognosis [9, 316, 317]. This is in agreement with what is reported in this thesis; that 

when cultured alongside HUVECs, MCTs appear more chemo-resistant following 

treatment.  
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Figure 46. Cell shrinking and Ki67 staining in micro-tumours. Following 300 µM 

carboplatin treatment, vascularised MCTs appeared protected form chemotherapy. A) 

Extensive G33 cell shrinkage is observed in carboplatin treated non-vascularised MCTs. 

B) Carboplatin treatmed also ablates Ki67 expression in non-vascularised MCTs, whereas 

some expression is still observed when MCTs are vascularised. Representative images. 

Red, phalloidin. Green, Ki67. Blue, DAPI. Yellow, CD31. CP = carboplatin. Scale bar: 

50 µm.  

 

11.10. Summary 

This chaper has focused on the development of a novel spheroid-on-a-chip model of 

HGSOC that is suitable for drug development studies. This system incorporated an MCT 

composed of a 4:1 ratio of G33 and HUVECs, with a vascular network which was 

developed in section 8 of this thesis. Using 70 kDa FITC-dextran and confocal imaging, 

we determined the MCT was both vascularised and perfusable, allowing the delivery of 

drugs through the vasculature into the MCT. The addition of HUVECs also promoted an 

increase in surface area of the MCTs, alluding to an increased proliferation and/or 

survival of HGSOC cells, which is similar to what is observed in section 10.5. In addition, 

HUVECs promote a phenotypic change in MCTs, as the spheroid becomes signficiantly 

less circular, again suggesting a phenotypic change to a more EMT phenotype. Following 

300 µM carboplatin treatment, vascularised MCTs qualitatively appeared to undergo less 

cell shrinkage and also maintained expression of Ki67. This would imply that the vascular 



151 
 

network is chemo-protective in carboplatin treatment. However, these are preliminary 

results and further experiments are required to conclude these observations. 
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12. Conclusions and future directions 

 

The aim of this thesis was to develop a novel high-grade serous ovarian cancer model 

using microfluidic and micropatterning techniques. This model would integrate a 

‘functional’ vasculature with HGSOC cells and allow analysis of how these cells interact. 

An organ-on-a-chip approach was taken due to the advantages it offers over traditional in 

vitro models. This approach is more representative of disease, allows cell 

compartmentilization and control over cell-cell interactions, allows physical 

manipulation, and requires little material and cell numbers. It also offers advantages over 

in vivo models being cheaper, quicker with fewer ethical constraints, and the potential for 

live-imaging. We, and many other groups, believe that this gives organ-on-a-chip models 

a distinct ability to bridge the gap between traditional in vitro and in vivo models, and 

hopefully allows the better identification of lead compounds in drug development, and 

understanding of disease pathophysiology.  

Due to the success of a number of organ-on-a-chip models there is a huge interest in this 

area, with the number of groups involved within this field continuing to grow [191]. 

However, one of the difficulties that organ-on-a-chip modeling faces is the successful 

uptake of these techniques by biology-based research groups, who have little expertise 

within the field of bioengineering. This is due to the general lack of published detailed 

protocols pertaining to the creation of these devices, and the lack of know-how within 

these groups. Within section 8 of this thesis we attempted to establish a general protocol 

for the development of a vasculature model on-a-chip. Following the method 

development to create PDMS microfluidic chips, we established a general ‘recipe’ to 

culture a functional HUVEC network, based upon the results of several groups, with the 
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details and concentrations shown in Table 4 [198-200, 205, 213, 222]. We next 

systematically progressed through these different ECM components (collagen and fibrin), 

growth factors (VEGF), solutions (thrombin and aprotinin), and cell densities before 

developing an established protocol which allows the formation of a stable and functional 

vasculature (see Table 4). The protocol also details how different factors impact the 

vasculature. Interestingly, a number of common fibrin gel constituents which are used in 

the literature, were superfluous within our system (type 1 collagen and aprotinin).  

Following the establishment of the vasculature-on-a-chip system, we studied the 

interactions between HUVECs and a number of stromal cell types, namely NHLFs and 

pericytes. NHLFs were investigated due to their reported ability to promote a stable and 

mature vasculature without requiring further growth factor supplements [199, 222]. 

However, although NHLFs did promote vessel formation, there was no significant 

difference to when HUVECs were cultured separately with exogenous VEGF. Pericytes 

are important structural components in the vasculature, and the ablation of their 

interactions with endothelial cells is embryonic lethal, due to defects in the vasculature 

causing haemorrhaging and oedema [155, 166]. The addition of pericytes to our vascular 

model reduced vessel hyperplasia, promoted long-term total tube length, inhibited 

vascular permeability and promoted vessel stability during nutrient deprivation. The 

vascular networks developed also expressed important junction markers, including VE-

cad, β-cat and ZO-1, implying a mature vessel network. Future work should focus on how 

pericytes are promoting these effects, and investigate the role of pericytes on endothelial 

proliferation, cell survival, and cellular hyperplasia. In addition, further analysis should 

investigate if pericytes alter vessel junction expression or localisation. In addition, 

pericytes play an important role in ovarian cancer progression, with a high pericyte score 

being highly correlated with poor prognosis in patients [67]. Indeed, co-injecting 



154 
 

pericytes and HGSOC cells in a mouse xenograft model promotes a more aggressive 

phenotype, and when co-cultured in vitro, pericytes promote HGSOC cell proliferation 

and invasion. Interestingly, the impact of pericyte was stated to be independent of the 

vasculature. Future experiments with pericytes could probe their interactions with 

HGSOC further. 

Many studies have investigated the role of the vasculature in different types of cancer, 

however few in vitro models study HGSOC interactions with the vasculature, perhaps 

due to to HGSOC primarily relying upon a different mechanism of invasion and 

metastasis [198, 211, 214, 215, 318]. Using our vascular system we were able to 

demonstrate that G33 HGSOC cell promote HUVEC vessel formation. In addition, 

HUVECs increase the overall number of G33s through paracrine and/or juxtacrine 

signalling; this may be through promoting cell proliferation or enhanced cell survival. 

Furthemore, when cultured with HUVECs, G33s were signficantly more likely to form 

large cell clusters (5+ cell). Analysis of G33 clusters revealed that HUVECs promote the 

formation of larger clusters with reduced circularity, this may be indicative of an EMT 

phenotype. Further research needs to be conducted to confirm this, but these preliminary 

results may suggest that HUVECs, through angiocrine signalling, are promoting G33 

cells to a more invasive phenotype.  

When investigating and mimicing disease in vitro, culturing representative cells is 

important to ensure your results are characteristic of clinical observations. Therefore, 

when investigating the interactions between HGSOC and endothelial cells it is essential 

to use representative cell sources. Here we describe using G33 cells, which were isolated 

from omental metastases by the Balkwill lab and are known to be HGSOC cells. 

However, G33s are co-cultured with HUVECs, which are foetal, macrovascular cells. 

Future work should use a more representative endothelial cell source. Winiarski et al 
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proposed a method for isolating omental microvascular endothelial cells (HOMEC) from 

human biopsies [319]. HOMECs express a number of endothelial cell markers, including 

CD31 and CD105. In addition, HOMECs undergo tube formation when treated with 

VEGF.  Indeed, Winiarski further demontrated that HOMECs undergo VEGF-

independent vessel formation following the addition of ovarian cancer cell conditioned 

medium [320]. HOMECs are a more suitable cell source for future studies investigating 

HGSOC-endothelial cell interactions. 

There has been a recent development in organ-on-a-chip models to incorporate spheroids 

or organoids into microfluidic devices. This has led to the development of systems 

including advanced brain and kidney organoids cultured within a microfluidic device, and 

NHLF and breast cancer spheroid-on-a-chip models [216, 304, 318, 321, 322]. This 

technique combines the advantages of two advanced in vitro models. This is demonstrated 

by Homan et al integrating flow into their system,  which promoted kidney epithelium 

maturation and morphogenesis, compared with static culture [321].  In section 11, we 

combined endothelial vascular networks with G33 and HUVEC MCTs in a spheroid-on-

a-chip device. Culturing MCTs alongside a vasculature promoted the formation of larger 

spheroids, demonstrated by their increased area. In addition, these MCTs displayed a 

different morphology, exhibiting a reduced circularity when compared with non-

vascularised MCTs. These results may indicate HUVECs are promoting G33 survival, 

increasing their proliferation and also inducing an EMT phenotype - in agreement with 

what we report in section 10.5. Culturing vascularised spheroids also allows the delivery 

of chemotherapeutic agents into the MCT via the vasculature. Our preliminary results 

indicate that HUVECs may be chemo-protective when culturing alongside MCTs with 

300 µM carboplatin - due to reduced cell shrinking and maintenance of Ki67 expression.  
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This study lays some light on the role of the endothelium in HGSOC. We demonstrate in 

two separate chip designs that HUVECs seem to promote the number of HGSOC cells 

and promote a phenotypic change to a more EMT phenotype. But we also raise some 

questions for the future. Do endothelial cells increase HGSOC cell proliferation? Do they 

promote HGSOC cell survival? Do they increase the expression of EMT markers? Do 

endothelial cells actually protect HGSOC cells from chemotherapy? As well as raising 

these questions, this thesis has also developed a model to answer them.  
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